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Abstract—It is increasingly suggested to identify Software
Vulnerabilities (SVs) in code commits to give early warnings
about potential security risks. However, there is a lack of effort
to assess vulnerability-contributing commits right after they are
detected to provide timely information about the exploitability,
impact and severity of SVs. Such information is important to
plan and prioritize the mitigation for the identified SVs. We
propose a novel Deep multi-task learning model, DeepCVA,
to automate seven Commit-level Vulnerability Assessment tasks
simultaneously based on Common Vulnerability Scoring System
(CVSS) metrics. We conduct large-scale experiments on 1,229
vulnerability-contributing commits containing 542 different SVs
in 246 real-world software projects to evaluate the effectiveness
and efficiency of our model. We show that DeepCVA is the
best-performing model with 38% to 59.8% higher Matthews
Correlation Coefficient than many supervised and unsupervised
baseline models. DeepCVA also requires 6.3 times less training
and validation time than seven cumulative assessment models,
leading to significantly less model maintenance cost as well. Over-
all, DeepCVA presents the first effective and efficient solution to
automatically assess SVs early in software systems.

Index Terms—Software vulnerability, Vulnerability assessment,
Deep learning, Multi-task learning, Mining software repositories,
Software security

I. INTRODUCTION

Software Vulnerabilities (SVs) are security weaknesses that
can make systems susceptible to cyber-attacks; thus, it is
critical to assess SVs [1l]. SV assessment is a process of
determining characteristics of SVs such as attack vectors and
impacts to help practitioners prioritize remediation for ever-
increasing SVs [2]]. For example, SVs with simple exploitation
and severe impacts likely require high fixing priority.

The expert-based Common Vulnerability Scoring System
(CVSS) [3] is a commonly used SV assessment framework.
CVSS provides metrics to quantify exploitability, impact and
severity level of SVs. However, there is usually delay in
the manual process of assigning CVSS metrics to new SVs
conducted by security experts [4]]. Hence, there is an apparent
need for automation in assessing reported/detected SVs.

Existing techniques (e.g., [S], [6], [Z], [8], [9]) to automate
bug/SV assessment have mainly operated on bug/SV reports,
but these reports may be only available long after SVs ap-
peared in practice. Our motivating analysis revealed that there
were 1,165 days, on average, from when an SV was injected
in a codebase until its report was published on National
Vulnerability Database (NVD) [10]. Our analysis agreed with

the findings of Meneely et al. [L1]. To tackle late-detected
bugs/SVs, recently, Just-in-Time (commit-level) approaches
(e.g., [12], [L3], [14], [15]) have been proposed to rely on
the changes in code commits to detect bugs/SVs right after
bugs/SVs are added to a codebase. Such early commit-level
SV detection can also help reduce the delay in SV assessment.
Even when SVs are detected early in commits, we argue
that existing automated techniques relying on bug/SV reports
still struggle to perform just-in-time SV assessment. Firstly,
there are significant delays in the availability of SV reports,
which render the existing SV assessment techniques unusable.
Specifically, SV reports on NVD generally only appear seven
days after the SVs are found/disclosed [L16]. Some of the
detected SVs may not even be reported on NVD [17], e.g., be-
cause of no disclosure policy. User-submitted bug/SV reports
are also only available post-release and more than 82% of the
reports are filed more than 30 days after developers detected
the bugs/SVs [18]]. Secondly, code review can provide faster
SV assessment, but there are still unavoidable delays (from
several hours to even days) [[19]. Delays usually come from
code reviewers’ late responses and manual analyses depending
on the reviewers’ workload and code change complexity [20].
Thirdly, it is non-trivial to automatically generate bug/SV
reports from vulnerable commits as it would require non-code
artefacts (e.g., stack traces or program crashes) that are mostly
unavailable when commits are submitted [5]], [21].
Performing commit-level SV assessment provides a possi-
bility to inform committers about the exploitability, impact
and severity of SVs in code changes and prioritize fixing
earlier without waiting for SV reports. However, to the best
of our knowledge, there is no existing work on automating
SV assessment in commits. Prior SV assessment techniques
that analyze text in SV databases (e.g., [6], [7], [8]) also
cannot be directly adapted to the commit level. Contrary to
text, commits contain deletions and additions of code with
specific structure and semantics [[12], [22]]. Additionally, we
speculate that CVSS metrics can be related. For example, an
SQL injection is likely to be highly severe since attackers
can exploit it easily via crafted input and compromise data
confidentiality and integrity. We posit that these metrics would
have common patterns in commits that can be potentially
shared between SV assessment models. Predicting related
tasks in a shared model has been successfully utilized for
various applications [23]. For instance, an autonomous car is



driven with simultaneous detection of vehicles, lanes, signs
and pavement [24]. These observations motivated us to tackle a
new and important research challenge, “How can we leverage
the common attributes of assessment tasks to perform
effective and efficient commit-level SV assessment?”

We present DeepCVA, a novel Deep multi-task learning
model, to automate Commit-level Vulnerability Assessment.
DeepCVA first uses attention-based convolutional gated re-
current units to extract features of code and surrounding
context from vulnerability-contributing commits (i.e., commits
with vulnerable changes). The model uses these features to
predict seven CVSS assessment metrics (i.e., Confidentiality,
Integrity, Availability, Access Vector, Access Complexity, Au-
thentication, and Severity) simultaneously using the multi-task
learning paradigm. The predicted CVSS metrics can guide SV
management and remediation processes.

Our key contributions are summarized as follows:

o We are the first to tackle the commit-level SV assessment
tasks that enable early security risks estimation and
planning for SV remediation.

We propose a unified model, DeepCVA, to automate
seven commit-level SV assessment tasks simultaneously.

« We extensively evaluate DeepCVA on our curated large-

scale dataset of 1,229 vulnerability-contributing commits
with 542 SVs from 246 real-world projects.

¢ We demonstrate that DeepCVA has 38% to 59.8%

higher Matthews Correlation Coefficient (MCC) than var-
ious supervised and unsupervised baseline models using
text-based features and software metrics. The proposed
context-aware features improve the MCC of DeepCVA
by 14.8%. The feature extractor with attention-based
convolutional gated recurrent units, on average, adds
52.9% MCC for DeepCVA. Multi-task learning also
makes DeepCVA 24.4% more effective and 6.3 times
more efficient in training/validation/testing than separate
models for seven assessment tasks.

¢ We release our source code, models and datasets at [25]].
Paper structure. Section[[lintroduces preliminaries and moti-
vation. Section [[IIl proposes the DeepCVA model for commit-
level SV assessment. Section [[V] describes our experimental
design and setup. Section [V] presents the experimental results.
Section discusses our findings and threats to validity.
Section [VIIl covers the related work. Section [VIII] concludes
the work and proposes future directions.

II. BACKGROUND AND MOTIVATION
A. Vulnerability in Code Commits

Commits are an essential unit of any version control system
(e.g., Git) and record all the chronological changes made to the
codebase of a software project. As illustrated in Fig. [Tl changes
in a commit consist of deletion(s) (—) and/or addition(s) (+) in
each affected file.

Vulnerability-Contributing Commits (VCCs) are commits
whose changes contain SVs [11]], e.g., using vulnerable li-
braries or insecure implementation. We focus on VCCs rather
than any commits with vulnerable code (in unchanged parts)

Vulnerability-Contributing Commit:
bbadbc2 (Sep 30, 2011)

Commit Message: WstxDriver did not trigger
Woodstox, but BEA StAX implementation
File: xstream/src/java/com/thoughtworks/
xstream/io/xml/WstxDriver.java

Code Diff:

Vulnerability-Fixing Commit:
e4f1457 (Oct 7, 2015)
Commit Message: Disable external entities
for StAX drivers
File: xstream/src/java/com/thoughtworks/
xstream/io/xml/WstxDriver.java
Code Diff:
protected XMLInputFactory createInputFactory() {
- return new MXParserFactory(); -

+ return new WstxInputFactory(); N 5
} ., + final XMLInputFactory instance = new
Trace last commit WstxInputFactory();
that touched the + instance.setProperty(XMLInputFactory.

. . IS_SUPPORTING_EXTERNAL_ENTITIES, false);
modified line(s) . return inzeance;

protected XMLInputFactory createInputFactory() {
- return new WstxInputFactory();

Fig. 1. Exemplary SV fixing commit (right) for the XML external entity
injection (XXE) (CVE-2016-3674) and its respective SV contributing commit
(left) in the xstream project.

since addressing VCCs helps mitigate SVs as early as they
are added to a project. VCCs are usually obtained based on
Vulnerability-Fixing Commits (VFCs) [14], [15]. An exem-
plary VFC and its respective VCC are shown in Fig.[Il VFCs
delete, modify or add code to eliminate an SV (e.g., disabling
external entities processing in the XML library in Fig. [ and
can be found in bug/SV tracking systems. Then, VCCs are
commits that last touched the code changes in VFCs. Our work
also leverages VFCs to obtain VCCs for building automated
commit-level SV assessment models.

B. Commit-level SV Assessment with CVSS

Common Vulnerability Scoring System (CVSS) [3] has
been an expert-maintained standard for SV assessment. CVSS
base metrics are prevalently used to determine through which
attack vectors SVs can be exploited and assess their potential
impacts. This allows developers to better plan and prioritize
the mitigation of such SVs. The base metrics are Confidential-
ity, Integrity, Availability, Access Vector, Access Complexity,
Authentication and Severity. We use CVSS version 2 of base
metrics to assess SVs as version 2 is still more predominantly
used than version 3 (introduced in 2015). SVs before 2015
are also still relevant in the modern context; e.g., CVE-
2004-0113 discovered in 2004 was exploited in a crypto
attack in 2018 [26]. Based on CVSS version 2, the VCC
(CVE-2016-3674) in Fig. [1l has a considerable impact on the
Confidentiality. This SV can be exploited with low (Access)
complexity with no authentication via public network (Access
Vector), making it an attractive target for attackers.

Despite the criticality of these SVs, there have been delays
in reporting, assessing and fixing them. Concretely, the VCC in
Fig. [l required 1,439 and 1,469 days to be reporteﬂ and fixed
(in VFC), respectively. Existing SV assessment methods based
on bug/SV reports (e.g., [6], [7], [8]) would need to wait more
than 1,000 days for the report of this SV. However, performing
SV assessment right after this commit was submitted can
bypass the waiting time for SV reports, enabling developers to
realize the exploitability/impacts of this SV and plan to fix it
much sooner. To the best of our knowledge, there has not been
any study addressing automated commit-level SV assessment,
i.e., assigning seven CVSS base metrics to a VCC. Our work
identifies and aims to bridge this important research gap.

Thttps://github.com/x-stream/xstream/issues/25
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Fig. 2. Workflow of DeepCVA for automated commit-level SV assessment. The VCC is the one described in Fig. [Tl

C. Feature Extraction from Commit Code Changes

The extraction of commit features is important for building
commit-level SV assessment models. Many existing commit-
level defect/SV prediction models have only considered com-
mit code changes (e.g., [12]], [22], [27]). However, we argue
that the nearby context of code changes also contributes valu-
able information to the prediction. For instance, the surround-
ing code of the changes in Fig. [I] provides extra details; e.g.,
the method return statement is modified and the return type is
XMLInputFactory. Such a type can help learn properties
of XXE SV that usually occurs with XML processing.

Besides the context, we speculate that SV assessment mod-
els can also benefit from the relatedness among the assessment
tasks. For example, the XXE SV in Fig. [1 allows attack-
ers to read arbitrary system files, which mainly affects the
Confidentiality rather than the Integrity and Availability of a
system. This work investigates the possibility of incorporating
the common features of seven CVSS metrics into a single
model using the multi-task learning paradigm [23] instead
of learning seven cumulative individual models. Specifically,
multi-task learning leverages the similarities and the interac-
tions of the involved tasks through a shared feature extractor to
predict all the tasks simultaneously. Such a unified model can
significantly reduce the time and resources to train, optimize
and maintain/update the model in the long run.

III. THE DEEPCVA MODEL

We propose DeepCVA (see Fig. ), a novel Deep learning
model to automate Commit-level Vulnerability Assessment.
DeepCVA is a unified and end-to-end trainable model that
concurrently predicts seven CVSS metrics (i.e., Confidential-
ity, Integrity, Availability, Access Vector, Access Complexity,
Authentication, and Severity) for a Vulnerability-Contributing
Commit (VCC). DeepCVA contains: (i) preprocessing, context
extraction and tokenization of code commits (section [II=A),
(if) feature extraction from commits shared by seven assess-
ment tasks using attention-based convolutional gated recurrent

units (section [I=B)), and (iii) simultaneous prediction of seven
CVSS metrics using multi-task learning [23]] (section [II=C).
To assign the CVSS metrics to a new VCC with DeepCVA,
we first preprocess the commit, obtain its code changes and
respective context and tokenize such code changes/context.
Embedding vectors of preprocessed code tokens are then
obtained, and the commit feature vector is extracted using the
trained feature extractor. This commit feature vector passes
through the task-specific blocks and softmax layers to get
the seven CVSS outputs with the highest probability values.
Details of each component are given hereafter.

A. Commit Preprocessing, Context Extraction & Tokenization

To train DeepCVA, we first obtain and preprocess code
changes (hunks) and extract the context of such changes. We
then tokenize them to prepare inputs for feature extraction.
Commit preprocessing. Preprocessing helps remove noise in
code changes and reduce computational costs. We remove
newlines/spaces and inline/multi-line comments since they do
not change code functionality. We do not remove punctuations
(e.g., “;7, “ (7, “)”) and stop words (e.g., and/or operators)
to preserve code syntax. We also do not lowercase code
tokens since developers can use case-sensitivity for naming
conventions of different token types (e.g., variable name:
system vs. class name: System). Stemming (i.e., reducing
a word to its root form such as equals to equal) is
not applied to code since different names can change code
functionality (e.g., the built-in equals function in Java).
Context extraction algorithm. We customize Sahal et
al.’s [28]] Closest Enclosing Scope (CES) to identify the context
of vulnerable code changes for commit-level SV assessment
(see section [IC). Sahal et al. [28] defined an enclosing
scope to be the code within a balanced amount of opening
and closing curly brackets such as if/switch/while/for
blocks. Among all enclosing scopes of a hunk, the one with
the smallest size (lines of code) is selected as CES to reduce
irrelevant code. Sahal et al. [28]] found CES usually contains
hunk-related information (e.g., variable values/types preceding



public class PlainNegotiator implements SaslNegotiator {

- private static final String UTF8 = Standard
Charsets.UTF_8.name();

+ private static final Charset UTF8 = Standard
Charsets.UTF_8;

} // End of the PlainNegotiator class

Fig. 3. Code changes outside of a method from the commit 4b9fb37 in the
Apache gpid-broker-j project.

changes). CES also alleviates the need for manually pre-
defining the context size as in [14], [29]. Some existing studies
(e.g., [30], [31]) only used the method/function scope, but
code changes may occur outside of a method. For instance,
changes in Fig. [3 do not have any enclosing method, but we
can still obtain its CES, i.e., the PlainNegotiator class.

There are still two main limitations with the definition of
CES in [28]. Firstly, a scope (e.g., for/while in Java) with
single-line content does not always require curly brackets.
Secondly, some programming languages do not use curly
brackets to define scopes like Python. To address these two
issues, we utilize Abstract Syntax Tree (AST) depth-first
traversal (see Algorithm [I) to obtain CESs of code changes,
as AST covers the syntax of all scope types and generalizes
to any programming languages.

Algorithm [I] contains: (i) the extract_scope function
for extracting potential scopes of a code hunk (lines 1-8), and
(if) the main code to obtain the CES of every hunk in a commit
(lines 9-18). The ext ract_scope function leverages depth-
first traversal with recursion to go through every node in an
AST of a file. Line 3 adds the selected part of an AST to the
list of potential scopes (potential_scopes) of the current
hunk. The first (root) AST is always valid since it encompasses
the whole file. Line 6 then checks whether each node (sub-
tree) of the current AST has one of the following types:
class, interface, enum, method, 1if/else, switch,
for/while/do, try/catch, and is surrounding the current
hunk. If the conditions are satisfied, the extract_scope
function would be called recursively in line 7 until a leaf
of the AST is reached. The main code starts to extract the
modified files of the current commit in line 9. For each file,
we extract code hunks (code deletions/additions) in line 12 and
then obtain the AST of the current file using an AST parser in
line 13. Line 16 calls the defined extract_scope function
to generate the potential scopes for each hunk. Among the
identified scopes, line 17 adds the one with the smallest size
(i.e., the number of code lines excluding empty lines and
comments) to the list of CESs (all_ces). Finally, line 18
of Algorithm [ returns all the CESs for the current commit.

We treat deleted (pre-change), added (post-change) code
changes and their CESs as four separate inputs to be vectorized
by the shared input embedding, as illustrated in Fig. Pl For
each input, we concatenate all the hunks/CESs in all the af-
fected files of a commit to explicitly capture their interactions.
Code-aware tokenization. The four inputs extracted from a
commit are then tokenized with a code-aware tokenizer to

Algorithm 1: AST-based extraction of the Closest
Enclosing Scopes (CESs) of commit code changes.

Input: Current Vulnerability-Contributing Commit (VCC): commit
Scope type: scope_types
Output: CESs of code changes in the current commit: all_ces

1 Function extract_scope (AST, hunk,visited = () :

2 global potential_scopes

3 potential_scopes «— potential_scopes + AST

4 visited «— visited + AST

5 foreach node € AST do

6 if node ¢ visited and type(node) € scope_types and
startnode < startpynk and end,,qe > endp ni then

7 extract_scope(AST, hunk, visited)

8 return

9 files «— extract_files(commit)

10 all_ces +— 0

1 foreach f; € files do

12 hunks <— extract_hunk(commit, f;)
13 AST; +— extract_AST(f;)

14 foreach h; € hunks do

15 potential_scopes +— 0
16 extract_scopes(AST;, hi)
17 all_ces «— all_ces + argmin(potential_scopes)

size
18 return all_ces

preserve code semantics and help prediction models be more
generalizable. For example, a++ and b++ are tokenized as a,
b and ++, explicitly giving a model the information about one-
increment operator (++). Tokenized code is fed into a shared
Deep Learning model, namely Attention-based Convolutional
Gated Recurrent Unit (AC-GRU), to extract commit features.

B. Feature Extraction with Deep AC-GRU

Deep AC-GRU has a three-way Convolutional Neural Net-
work to extract n-gram features and Attention-based Gated
Recurrent Units to capture dependencies among code changes
and their context. This feature extractor is shared by four
inputs, i.e., deleted/added code hunks/context. Each input has
the size of N x L, where N is the no. of code tokens and
L is the vector length of each token. All inputs are truncated
or padded to the same length N to support parallelization.
The feature vector of each input is obtained from a shared
Input Embedding layer that maps code tokens into fixed-length
arithmetic vectors. The dimensions of this embedding layer
are |V| x L, where |V| is the code vocabulary size, and its
parameters are learned together with the rest of the model.
Three-way Convolutional Neural Network. We use a shared
three-way Convolutional Neural Network (CNN) [32] to ex-
tract n-grams (n = 1,3,5) of each input vector. The three-
way CNN has filters with three sizes of one, three and five,
respectively, to capture common code patterns, e.g., public
class Integer. The filters are randomly initialized and
jointly learned with the other components of DeepCVA. We
did not include 2-grams and 4-grams to reduce the required
computational resources without compromising the model
performance, which has been empirically demonstrated in
section To generate code features of different window
sizes with the three-way CNN, we multiply each filter with
the corresponding input rows and apply non-linear ReLU
activation function [33], i.e., ReLU(x) = max(0, x). We repeat



the same convolutional process from the start to the end of
an input vector by moving the filters down sequentially with
a stride of one. This stride value is the smallest and helps
capture the most fine-grained information from input code as
compared to larger values. Each filter size returns feature maps
of the size (N — K + 1) x F, where K is the filter size (one,
three or five) and F' is the number of filters. Multiple filters
are used to capture different semantics of commit data.
Attention-based Gated Recurrent Unit. The feature maps
generated by the three-way CNN sequentially enter a Gated
Recurrent Unit (GRU) [31]. GRU, defined in Eq. (I), is an
efficient version of Recurrent Neural Networks and used to
explicitly capture the order and dependencies between code
blocks. For example, the return statement comes after the
function declarations of the VCC in Fig.
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where W_, W,., W;, U,, U,, U, are learnable weights, b,
b., by, are learnable biases, © is element-wise multiplication, o
is sigmoid function and tanh() is hyperbolic tangent function.
To determine the information (h;) at each token (time step) t,
GRU combines the current input (x;) and the previous time
step (hy_1) using the update (z;) and reset (r;) gates. h; is
then carried on to the next token until the end of the input to
maintain the dependencies of the whole code sequence.

The last token output of GRU is often used as the whole se-
quence representation, yet it suffers the information bottleneck
problem [34], especially for long sequences. To address this
issue, we incorporate the attention mechanism [34] into GRU
to explicitly capture the contribution of each input token, as
formulated in Eq. (2).

(D

m
outyiiention = E wihi
=1

w; = softmax(W tanh(Wh; + b,)) 2)
exp(W, tanh(W h; + b,))

> exp(Wy tanh(Woh; +b,))
i=1

where w; is the weight of h;; W, W, are learnable weights,
b, 1s learnable bias, and m is the number of code tokens.

The attention-based outputs (out,ttention) Of the three
GRUs (see Fig. @) are concatenated into a single feature
vector to represent each of the four inputs (pre-/post-change
hunks/contexts). The commit feature vector is a concatenation
of the vectors of all four inputs generated by the shared AC-
GRU feature extractor. This feature vector is used for multi-
task prediction of seven CVSS metrics.

C. Commit-level SV Assessment with Multi-task Learning

This section describes the multi-task learning layers of
DeepCVA for efficient commit-level SV assessment using a
single model as well as how to train the model end-to-end.

Multi-task learning layers. The last component of DeepCVA
consists of the multi-task learning layers that simultaneously
give the predicted CVSS values for seven SV assessment
tasks. As illustrated in Fig. Bl this component contains two
main parts: task-specific blocks and softmax layers. On top
of the shared features extracted by AC-GRU, task-specific
blocks are necessary to capture the differences among the
seven tasks. Each task-specific block is implemented using a
fully connected layer with non-linear ReLU activations [33].
Specifically, the output vector (task;) of the task-specific
block for assessment task ¢ is defined in Eq. (3).

task; = ReLU(W Xcommit + bt) 3)

where Xc.ommit 18 the commit feature vector from AC-GRU,
W, is learnable weights and b; is learnable bias.

Each task-specific vector goes through the respective soft-
max layer to determine the output of each task with the highest
predicted probability. The prediction output (pred;) of task i
is given in Eq. ().

pred; = argmax(prob;)
prob; = softmax(W task; + b,)
exp(z;) “4)

nlabels;

>, exp(z)

c=1

softmax(z;) =

where prob, contains the predicted probabilities of nlabels;
possible outputs of task i; W, is learnable weights and b,, is
learnable bias.

Training DeepCVA. To compare DeepCVA’s outputs with
ground-truth CVSS labels, we define a multi-task loss that
averages the cross-entropy losses of seven tasks in Eq. (9).

7
l0Sspeepcv A = E loss;

i=1
nlabels;
loss; = — Z ys log(probf), y§ = 1if cistrue classelse 0
c=1

&)
where y¢, prob$, and nlabels; are the ground-truth value, pre-
dicted probability and all labels of CVSS task ¢, respectively.

We minimize this multi-task loss using a stochastic gradient
descent method [35] to optimize the weights of learnable
components in DeepCVA. We also use backpropagation [36]]
to automate partial differentiation with chain-rule and increase
the efficiency of gradient computation throughout the model.

IV. EXPERIMENTAL DESIGN AND SETUP
All the experiments ran on a computing cluster that has 16
CPU cores with 16GB of RAM and Tesla V100 GPU.

A. Datasets

To develop commit-level SV assessment models, we built
a dataset of Vulnerability-Contributing Commits (VCCs) and
their CVSS metrics. We used Vulnerability-Fixing Commits
(VFCs) to retrieve VCCs, as discussed in section [I=Al
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Fig. 4. Data distributions of seven SV assessment tasks.

VFC identification. We first obtained VFCs from three public
sources: NVD [10]], GitHub and its Advisory DatabaseE| as well
as a manually curated/verified VFC dataset (VulasDB) [37]]. In
total, we gathered 13,310 VFCs that had dates ranging from
July 2000 to October 2020. We selected VFCs in Java projects
as Java has been commonly investigated in the literature
(e.g., [12], [31]], [38]) and also in the top five most popular
languages in practicel’| Following the practice of [38]], we
discarded VFCs that had more than 100 files and 10,000 lines
of code to reduce noise in the data.

VCC identification with the SZZ algorithm. After the fil-
tering steps, we had 1,602 remaining unique VFCs to identify
VCCs using the SZZ algorithm [39]]. This algorithm selects
commits that last modified the source code lines deleted or
modified to address an SV in a VFC as the respective VCCs
of the same SV (see Fig. [[). As in [39], we first discarded
commits with timestamps after the published dates of the
respective SVs on NVD since SVs can only be reported
after they were injected in a codebase. We then removed
cosmetic changes (e.g., newlines and white spaces) and single-
line/multi-line comments in VFCs since these elements do not
change code functionality [38]. Like [38]], we also considered
copied or renamed files while tracing VCCs. We obtained
1,229 unique VCC5E| of 542 SVs in 246 real-world Java
projects and their corresponding expert-verified CVSS metrics
on NVD. Distributions of curated CVSS metrics are illustrated
in Fig. @l The details of the number of commits and projects
retained in each filtering step are also given in Table [l Note
that some commits and projects were removed during the
tracing of VCCs from VFCs due to the issues coined as ghost
commits studied by Rezk et al. [40]. We did not remove
large VCCs (with more than 100 files and 10k lines) as
we found several VCCs were large initial/first commits. Our

Zhttps://github.com/advisories

3https://insights.stackoverflow.com/survey/2020#technology-most-loved-
dreaded-and-wanted-languages-loved

4The SV reports of all curated VCCs were not available at commit time.

TABLE I: THE NUMBER OF COMMITS AND PROJECTS AFTER EACH
FILTERING STEP.

No.  Filtering step No. of ¢ No. of projects

1 All unfiltered VFCs 13,310 2,864

2 Removing duplicate VFCs 9,989 2,864

3 Removing non-Java VFCs 1,607 361
Removing VFCs with more than

4100 files & 10K lines 1,602 358
Tracing VCCs from VFCs using

3 the SZZ algorithm 3,742 342
Removing VCCs with null

6 characteristics (CVSS values) 2271 246

7 Removing duplicate VCCs 1,229 246

s I T T T T 1T 1 o

,,,,,,,,,,,,,,,,,,,, : 3 I:‘ Testing 3

12 equal folds ordered by time (commit date)

Fig. 5. Time-based splits for training, validating & testing.

observations agreed with the findings of Meneely et al. [[L1]].
Manual VCC validation. To validate our curated VCCs, we
randomly selected 293 samples, i.e., 95% confidence level
and 5% error [41]], for two authors to independently examine.
The manual VCC validation was considerably labor-intensive,
which took approximately 120 man-hours. The Cohen’s kappa
(k) inter-rater reliability score [42]] was 0.83, i.e., “almost
perfect” agreement [43]]. We also involved the third author
in the discussion to resolve disagreements. Our validation
found that 85% of the VCCs were valid. In fact, the SZZ
algorithm is imperfect [44]], but we assert that it is nearly
impossible to obtain near 100% accuracy without exhaustive
manual validation. Specifically, the main source of incorrectly
identified VCCs in our dataset was that some files in VFCs
were used to update version/documentation or address another
issue instead of fixing an SV. One such false positive VCC was
the commit 87c¢89f0 in the jspwiki project that last modified
the build version in the corresponding VFC.

Data splitting. We adopted time-based splits [45] for training,
validating and testing the models to closely represent real-
world scenarios where incoming/future unseen data is not
present during training [38], [46]. We trained, validated and
tested the models in 10 rounds using 12 equal folds split based
on commit dates (see Fig. @). Specifically, in round 3, folds
1 — 4,4+ 1 and ¢ + 2 were used for training, validation
and testing, respectively. We chose an optimal model with the
highest average validation performance and then reported its
respective average testing performance over 10 rounds, which
helped avoid unstable results of a single testing set [47].

B. Evaluation Metrics

To evaluate the performance of automated commit-level SV
assessment, we utilized the F1-Score and Matthews Corre-
lation Coefficient (MCC) metrics that have been commonly
used in the literature (e.g., [6], [[7], [46]). These two metrics
are suitable for the imbalanced classes [48]] in our data (see
Fig. ). F1-Score has a range from 0 to 1, while MCC takes



values from —1 to 1, where 1 is the best value for both metrics.
MCC was used to select optimal models since MCC explicitly
considers all classes [48]]. To evaluate the tasks with more than
two classes, we used macro F1-Score [7] and the multi-class
version of MCC [49]. MCC of the multi-task DeepCVA model
was the average MCC of seven constituent tasks. Note that
MCC is not directly proportional to Fl-score.

C. Hyperparameter and Training Settings of DeepCVA

Hyperparameter settings. We used the average validation
MCC to select optimal hyperparameters for DeepCVA’s com-
ponents. We also ran DeepCVA 10 times each round to reduce
the impact of random initialization on model performance.
We first chose 1024 for the input length of the pre-/post-
change hunks/context (see Fig. 2)), which has been commonly
used in the literature (e.g., [S0], [S1]). Using a shorter input
length would likely miss many code tokens, while a longer
length would significantly increase the model complexity and
training time. Shorter commits were padded with zeros, and
longer ones were truncated to ensure the same input size for
parallelization with GPU [12f], [22]]. We built a vocabulary of
10k most frequent code tokens in the Input Embedding layer as
suggested by [52]. Note that using 20k-sized vocabulary only
raised the performance by 2%, yet increased the model com-
plexity by nearly two times. We selected an input embedding
size of 300, i.e., a standard and usually high limit value for
many embedding models (e.g., [53], [54]), and we randomly
initialized embedding vectors [12[], [32]. For the number of
filters of the three-way CNN as well as the hidden units of
the GRU, Attention and Task-specific blocks, we tried {32,
64, 128}, similar to [6]. We picked 128 as it had at least 5%
better validation performance than 32 and 64.

Training settings. We used the Adam algorithm [55], the
state-of-the-art stochastic gradient descent method, for training
DeepCVA end-to-end with a learning rate of 0.001 and a
batch size of 32 as recommended by Hoang et al. [12]. To
increase the training stability, we employed Dropout [56] with
a dropout rate of 0.2 and Batch Normalization [S7] between
layers. We trained DeepCVA for 50 epochs, and we would
stop training if the validation MCC did not change in the last
five epochs to avoid overfitting [12], [22].

D. Baseline Models

We considered three types of learning-based baselines for
automated commit-level SV assessment, as learning-based
models can automatically extract relevant SV patterns/features
from input data for prediction without relying on pre-defined
rules. The baselines were (i) S-CVA: Supervised single-
task model using either software metrics or text-based fea-
tures including Bag-of-Words (BoW or token count) and
Word2vec [53]]; (ii) X-CVA: supervised eXtreme multi-class
model that performed a single prediction for all seven tasks
using the above feature types; and (iii) U-CVA: Unsupervised
model using k-means clustering [58] with the same features
as S-CVA/X-CVA. Note that there was no existing technique
for automating commit-level SV assessment, so we could only

compare DeepCVA with the compatible techniques proposed
for related tasks, as described hereafter.

Software metrics (e.g., [13], [14], [15]) and text-based fea-
tures (BoW/Word2vec) (e.g., [27], [59]) have been widely
used for commit-level prediction. We used 84 software metrics
proposed by [13]], [14], [15] for defect/SV prediction. Among
these metrics, we converted C/C++ keywords into Java ones
to match our dataset. The list of software metrics used in
this work can be found at [25]. As in [13], in each round in
Fig. Bl we also removed correlated software metrics that had
a Spearman correlation larger than 0.7 based on the training
data of that round to avoid performance degradation, e.g., no.
of stars vs. forks of a project. For BoW and Word2vec, we
adopted the same vocabulary size of 10k to extract features
from four inputs described in Fig. 2| as in DeepCVA. Feature
vectors of all inputs were concatenated into a single vector.
For Word2vec, we averaged the vectors of all tokens in an
input to generate its feature vector, which has been shown to
be a strong baseline [60]. Like DeepCVA, we also used an
embedding size of 300 for each Word2vec token.

Using these feature types, S-CVA trained a separate super-
vised model for each CVSS task, while X-CVA used a single
multi-class model to predict all seven tasks simultaneously.
X-CVA worked by concatenating all seven CVSS metrics
into a single label. To extract the results of the individual
tasks for X-CVA, we checked whether the ground-truth label
of each task was in the concatenated model output. For S-
CVA and X-CVA, we applied six popular classifiers: Logistic
Regression (LR), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Random Forest (RF), XGBoost (XGB) [61]]
and Light Gradient Boosting Machine (LGBM) [62]]. These
classifiers have been used for SV assessment based on SV re-
ports [[7]], [8l]. The hyperparameters for tuning these classifiers
were regularization: {11, 12}; regularization coefficient: {0.01,
0.1, 1, 10, 100} for LR and {0.01, 0.1, 1, 10, 100, 1,000,
10,000} for SVM; no. of neighbors: {11, 31, 51}, distance
norm: {1, 2} and distance weight: {uniform, distance} for
KNN; no. of estimators: {100, 300, 500}, max. depth: {3,
5, 7, 9, unlimited}, max. no. of leaf nodes: {100, 200, 300,
unlimited} for RF, XGB and LGBM. These hyperparameters
have been adapted from relevant studies [7], [8]], [63l].

Unlike S-CVA and X-CVA, U-CVA did not require CVSS
labels to operate; as thus, U-CVA required less human effort
than S-CVA and X-CVA. We tuned U-CVA for each task with
the following no. of clusters (k): {2, 3, 4, 5, 6, 7, 8, 9, 10,
15, 20, 25, 30, 35, 40, 45, 50}. To assess a new commit
with U-CVA, we found the cluster with the smallest Euclidean
distance to that commit and assigned it the most frequent class
of each task in the selected cluster.

V. RESEARCH QUESTIONS AND EXPERIMENTAL RESULTS

A. RQI: How does DeepCVA Perform Compared to Baseline
Models for Commit-level SV Assessment?

Motivation. We posit the need for commit-level Software
Vulnerability (SV) assessment tasks based on seven CVSS



TABLE II: TESTING PERFORMANCE OF DEEPCVA AND BASELINE MODELS. NOTES: OPTIMAL CLASSIFIERS OF S-CVA/X-CVA AND OPTIMAL CLUSTER
NO. (k) OF U-CVA ARE IN PARENTHESES. BOW, W2V AND SM ARE BAG-OF-WORDS, WORD2VEC AND SOFTWARE METRICS, RESPECTIVELY. THE BEST
PERFORMANCE OF DEEPCVA IS FROM THE RUN WITH THE HIGHEST MCC IN EACH ROUND. BEST ROW-WISE VALUES ARE IN GREY.

. Evaluation Model
CVSS metric metric S-CVA X-CVA U-CVA DeepCVA (Best
BoW w2v SM BoW W2V SM BoW W2V SM in parentheses)

Confidentiality F1-Score 0.416 0.406 0.423 0.420 0.434 0.429 0.292 0332 0313 0.436 (0.475)
MCC 0.174 0.239 0.232 0.188 0.241 0.203 0.003 0.092  0.017 0.268 (0.299)

(LR) (LGBM) (XGB) (LR) (LR) (XGB) (50) (45) (50) . -
Integrity F1-Score 0.373 0.369 0.352 0.391 0.415 0.407 0.284 0.305  0.330 0.430 (0.458)
MCC 0.127 0.176 0.146 0.114 0.160 0.128 -0.005  0.091 0.084 0.250 (0.295)

(LGBM) (LGBM) (RF) (LGBM) (LR) (LGBM) (25) (30) (25) - )
Availability F1-Score 0.381 0.389 0.384 0.424 0.422 0.406 0.254 0332  0.238 0.432 (0.475)
MCC 0.182 0.173 0.126 0.187 0.192 0.123 0.064 0.092  0.016 0.273 (0.303)

(RF) (LGBM) (XGB) (LR) (LR) (XGB) (10) (45) 3) - )
Access Vector F1-Score 0.511 0.487 0.440 0.499 0.532 0.487 0.477 0.477 0477 0.554 (0.578)
MCC 0.07 0.051 0.018 0.044 0.107 0.012 0.000 0.000  0.000 0.129 (0.178)

(XGB) (LR) (LR) (LGBM) (LR) (LGBM) ) (40) (6) . :
Access Complexity F1-Score 0.437 0.448 0.417 0.412 0.445 0.361 0.315 0.365  0.385 0.464 (0.475)
MCC 0.119 0.143 0.111 0.131 0.121 0.088 0.000 0.022 0.119 0.242 (0.261)

(LR) (XGB) (LGBM) (LR) (XGB) (SVM) (@) (30) (15) . .
Authentication F1-Score 0.601 0.584 0.593 0.541 0.618 0.586 0.458 0.526  0.492 0.657 (0.677)
MCC 0.258 0.264 0.268 0.212 0.282 0.208 0.062 0.162  0.089 0.352 (0.388)

(SVM) (XGB) (LGBM) (RF) (SVM) (XGB) (50) (30) (50) - )
Severity F1-Score 0.407 0.357 0.345 0.382 0.381 0.358 0.283 0.288  0.287 0.424 (0.460)
MCC 0.144 0.153 0.057 0.130 0.149 0.058 -0.018  0.010  0.026 0.213 (0.277)

(LR) (XGB) (XGB) (LR) (LGBM) (XGB) 4) (15) 4) - -
Average ‘ F1-Score ‘ 0.447 0.434 0.422 0.438 0.464 0.433 0.338 0.375  0.360 0.485 (0.514)
MCC 0.153 0.171 0.137 0.144 0.179 0.117 0.015 0.067  0.050 0.247 (0.286)

metrics. Such tasks help developers to understand the ex-
ploitability and impacts of SVs as early as they are introduced
in a system and devise remediation plans accordingly. RQ1
evaluates our DeepCVA for this new and important task.
Method. We compared the effectiveness of our DeepCVA
model with the S-CVA, X-CVA and U-CVA baselines (see
section [V=D)) on the festing sets. We trained, validated and
tested the models using the time-based splits, as described in
section [[V-Al Because of the inherent randomness of GPU-
based implementation of DeepCVAE] we ran DeepCVA 10
times in each round and then averaged its performance. The
baselines were not affected by this issue as they did not
use GPU. For DeepCVA, we used the hyperparameter/training
settings in section For each type of baseline, we used
grid search on the hyperparameters given in section to
find the optimal model with the highest validation MCC (see
section [[V=B).

Results. DeepCVA outperformed all baselinesﬂ (X-CVA, §-
CVA and U-CVA) in terms of both MCC and FI-Scord|
Jor all seven tasks (see Table [[I). DeepCVA got average and
best MCC values of 0.247 and 0.286, i.e., 38% and 59.8%
better than the second-best baseline (X-CVA with Word2vec
features), respectively. Task-wise, DeepCVA had 11.2%, 42%,
42.2%, 20.6%, 69.2%, 24.8% and 39.2% higher MCC than the
best respective baseline models for Confidentiality, Integrity,
Availability, Access Vector, Access Complexity, Authentica-
tion and Severity tasks, respectively. Notably, the best Deep-
CVA model achieved stronger performance than all baselines
with MCC percentage gaps from 24.1% (Confidentiality) to
82.5% (Access Complexity). The average and task-wise F1-

Shttps://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-results-
using-keras-during-development

SMCC values of random and most-frequent-class baselines were all < 0.01.

Precision (0.533)/Recall (0.445) of DeepCVA were > than all baselines.

Score values of DeepCVA also beat those of the best baseline
(X-CVA with Word2vec features) by substantial margins.
We found that DeepCVA significantly outperformed the best
baseline models in terms of both MCC and F1-score averaging
across all seven tasks, confirmed with p-values < 0.01 using
the non-parametric Wilcoxon signed-rank tests [64]. These
results show the effectiveness of the novel design of DeepCVA.

An example to qualitatively demonstrate the effectiveness of
DeepCVA is the VCC ff655ba in the Apache xerces2-j project,
in which a hashing algorithm was added. This algorithm was
later found vulnerable to hashing collision that could be ex-
ploited with timing attacks in the fixing commit 99265d9. This
SV was caused by the order of items being added to the hash
table in the put (String key, int wvalue) function.
Such an order could not be easily captured by baseline models
whose features did not consider the sequential nature of code
(i.e., BoW, Word2vec and software metrics) [65]. More details
about the contributions of different components to the overall
performance of DeepCVA are covered in section

Regarding the baselines, the average MCC value (0.147) of
X-CVA was on par with that (0.154) of S-CVA. This result
reinforces the benefits of leveraging the common attributes
among seven CVSS metrics to develop effective commit-level
SV assessment models. However, X-CVA was still not as
strong as DeepCVA mainly because of its much lower training
data utilization per output. For X-CVA, there was an average
of 39 output combinations of CVSS metrics in the training
folds, i.e., 31 commits per output. In contrast, DeepCVA had
13.2 times more data per output as there were at most three
classes for each task (see Fig. ). Finally, we found supervised
learning (S-CVA, X-CVA and DeepCVA) to be at least 74.6%
more effective than the unsupervised approach (U-CVA). This
result demonstrates the usefulness of using CVSS metrics to
guide the extraction of commit features.
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Fig. 6. Differences of testing MCC (multiplied by 100 for readability) of the model variants compared to the proposed DeepCVA in section [Tl Note: The
average MCC values (without multiplying by 100) of the model variants are in parentheses.

B. RQ2: What are the Contributions of the Main Components
in DeepCVA to Model Performance?

Motivation. We have shown in RQI that DeepCVA sig-
nificantly outperformed all the baselines for seven commit-
level SV assessment tasks. RQ2 aims to give insights into
the contributions of the key components to such a strong
performance of DeepCVA. Such insights can help researchers
and practitioners to build effective SV assessment models.

Method. We evaluated the performance contributions of the
main components of DeepCVA: (i) Closest Enclosing Scope
(CES) of code changes, (ii) CNN filter size, (iii) Three-way
CNN, (iv) Attention-based GRU, (v) Attention mechanism,
(vii) Task-specific blocks and (vi) Multi-task learning. For each
component, we first removed it from DeepCVA, retrained the
model variant and reported its festing result. When we re-
moved Attention-based GRU, we used max-pooling [12f], [32]]
after the three-way CNN to generate the commit vector. When
we removed Multi-task learning, we trained a separate model
for each of the seven CVSS metrics. We also investigated an
Abstract Syntax Tree (AST) variant of DeepCVA, in which
we complemented input code tokens with their syntax (e.g.,
int a = 1 is a VariableDeclarationStatement,
where a is an Tdentifier and 1 is a NumberLiteral).
This AST-based variant explored the usefulness of syntactical
information for commit-level SV assessment. We extracted the
nodes in an AST that contained code changes and their CES.
If more than two nodes contained the code of interest, we
chose the one at a lower depth in the AST. We then flattened
the nodes with depth-first traversal for feature extraction [66].
Results. As depicted in Fig. 6] the main componentﬂ uplifted
the average MCC of DeepCVA by 25.9% for seven tasks. Note
that 7/8 model variants (except the model with no attention
mechanism) outperformed the best baseline model from RQI.
These results were confirmed with p-values < 0.01 using
Wilcoxon signed-rank tests [64]. Specifically, the componentsIm
of DeepCVA increased the MCC by 25.3%, 20.8%, 21.5%,
35.8%, 35.5%, 18.9% and 23.6% for Confidentiality, Integrity,

8We excluded the DeepCVA variant with no attention mechanism as its
performance was abnormally low, affecting the overall trend of other variants.

Auvailability, Access Vector, Access Complexity, Authentica-
tion and Severity, respectively.

For the inputs, using the Smallest Enclosing Scope (CES) of
code changes resulted in a 14.8% increase in MCC compared
to using hunks only, while using AST inputs had 8.8% lower
performance. This finding suggests that code context is im-
portant for assessing SVs in commits. In contrast, syntactical
information is not as necessary since code structure can be
implicitly captured by code tokens and their sequential order
using our AC-GRU.

The key components of the AC-GRU feature extractor
boosted the performance by 13.2% (3-grams vs. 1-grams),
25.6% (Attention-based GRU), 30.2% (Three-way CNN) and
142% (Attention). Note that DeepCVA surpassed the state-of-
the-art 3-gram [6] and 1-gram [12] CNN-only architectures
for (commit-level) SV/defect prediction. These results show
the importance of combining the (1,3,5)-gram three-way CNN
with attention-based GRUs rather than using them individually.
We also found that 1-5 grams did not significantly increase
the performance (p-value = 0.186), confirming our decision in
section [II=B] to only use 1,3,5-sized filters.

For the prediction layers, we raised 8.8% and 24.4% MCC
of DeepCVA with Task-specific blocks and Multi-task learn-
ing, respectively. Multi-task DeepCVA took 8,988 s (2.5 hours)
and 25.7 s to train/validate and test in 10 rounds x 10 runs,
which were 6.3 and 6.2 times faster compared to those of seven
single-task DeepCVA models, respectively. DeepCVA was
only 11.3% and 12.7% slower in training/validating and testing
than one single-task model on average, respectively. These
values highlight the efficiency of training and maintaining the
multi-task DeepCVA model. Finally, obtaining Severity using
the CVSS formula [7]] from the predicted values of the other
six metrics dropped MCC by 17.4% for this task. This result
supports predicting Severity directly from commit data.

C. RQ3: What are the Effects of Rebalancing Techniques on
Model Performance?

Motivation. Recent studies (e.g., [67], [68]) have shown that
rebalancing techniques (i.e., equalizing the class distributions
in the training set) can improve model effectiveness for
defect/SV prediction. However, these rebalancing techniques



can only be applied to single-task models, not multi-task ones.
The reason is that each task has a unique class distribution
(see Fig. M), and thus balancing class distribution of one task
will not balance classes of the others. RQ3 is important to
test whether multi-task DeepCVA still outperforms single-task
baselines in RQ1/RQ2 using rebalancing techniques.
Method. We compared the festing performance of multi-task
DeepCVA with baselines in RQ1/RQ2 using two popular
oversampling techniques [67]]: Random OverSampling (ROS)
and SMOTE [69]. ROS randomly duplicates the existing sam-
ples of minority classes, while SMOTE randomly generates
synthetic samples between the existing minority-class samples
and their nearest neighbor(s) based on Euclidean distance. We
did not consider undersampling, as such models performed
poorly because of some very small minority classes (e.g.,
Low Access Complexity had only 14 samples). We applied
ROS and SMOTE to only the training set and then optimized
all baseline models again. Like [67], we also tuned SMOTE
using grid search with different values of nearest neighbors:
{1, 5, 10, 15, 20}. We could not apply SMOTE to single-task
DeepCVA as features were trained end-to-end and unavailable
prior training for finding nearest neighbors. We also did not
apply SMOTE to X-CVA as there was always a single-sample
class in each round, producing no nearest neighbor.

Results. ROS and SMOTE increased the average perfor-
mance (MCC) of 3/4 baselines except X-CVA (see Table [ITI).
However, the average MCC of our multi-task DeepCVA
was still 14.4% higher than that of the best oversampling-
augmented baseline (single-task DeepCVA with ROS). Over-
all, MCC increased by 8%, 6.9% and 9.1% for S-CVA
(ROS), S-CVA (SMOTE) and single-task DeepCVA (ROS),
respectively. These improvements were confirmed significant
with p-values < 0.01 using Wilcoxon signed-rank tests [64].
We did not report oversampling results of U-CVA as they
were still much worse compared to others. We found single-
task DeepCVA benefited the most from oversampling, prob-
ably since Deep Learning usually performs better with more
data [70]. In contrast, oversampling did not improve X-CVA
as oversampling did not generate as many samples for X-CVA
per class as for S-CVA (i.e., X-CVA had 13 times, on average,
more classes than S-CVA). These results further strengthen the
effectiveness and efficiency of multi-task learning of DeepCVA
for commit-level SV assessment even without the overheads
of rebalancing/oversampling data.

VI. DISCUSSION
A. DeepCVA and Beyond

DeepCVA has been shown to be effective for commit-level
SV assessment in the three RQs, but our model still has false
positives. We analyze several representative patterns of such
false positives to help further advance this task and solutions
for researchers and practitioners.

Some commits were too complex and large to be assessed
correctly. For example, the VCC 015f7¢f in the Apache Spark
project contained 1,820 additions and 146 deletions across 29
files; whereas, the untrusted deserialization SV occurred in just

TABLE III: TESTING PERFORMANCE (MCC) OF OPTIMAL BASELINES
USING OVERSAMPLING TECHNIQUES AND MULTI-TASK DEEPCVA. NOTE:
fDENOTES THAT THE OVERSAMPLED MODELS OUTPERFORMED THE
NON-OVERSAMPLED ONE REPORTED IN RQ1/RQ2.

Single-task

S-CVA S-CVA X-CVA Multi-task
CVSS Task (ROS) (SMOTE)  (ROS) Dfﬁ%cs‘;" DeepCVA
Confidentiality | 0.220 0.203 0.185 0.250" 0.268
Integrity 0.174 0.168 0.179" 0.206" 0.250
Availability 0.195 0.187° 0.182 0.209" 0.273
Access Vector 0.115" 0.110° 0.092 0.156" 0.129
Access Comp. 0.172° 0.186" 0.144" 0.190" 0.242
Authentication | 0.325 0.340° 0.299" 0.318 0.352
Severity 0.132 0.124 0.141 0.186" 0.213
Average [ 0.1907 0.1887 0.175 0.216' 0.247

one line 56 in LauncherConnection. java. Recent tech-
niques (e.g., [71], [72]) can pinpoint more precise locations
(e.g., individual files or lines in commits) of defects. Such
techniques can be adapted to remove irrelevant code in VCCs
(i.e., changes that do not introduce or contain SVs). More
relevant code potentially gives more fine-grained information
for the SV assessment tasks. Note that DeepCVA provides a
strong baseline for comparing against fine-grained approaches.

DeepCVA also struggled to predict assessment proper-
ties for SVs related to external libraries. For instance,
the SV in the commit 015f7¢f above occurs with the
ObjectInputStream class from the java.io package,
which sometimes prevented DeepCVA from correctly assess-
ing an SV. If an SV happens frequently with a package in
the training set, (e.g., the XML library of the VCC bba4bc2
in Fig. [[), DeepCVA still can infer correct CVSS metrics.
Pre-trained code models on large corpora [31f], [SO], [[73]
along with methods to search/generate code [74] and doc-
umentation [75] as well as (SV-related) information from
developer Q&A forums [76]] can be investigated to provide
enriched context of external libraries, which would support
more reliable commit-level SV assessment with DeepCVA.

We also observed that DeepCVA, alongside the considered
baseline models, performed significantly worse, in terms of
MCC, for Access Vector compared to the remaining tasks.
We speculate that the main reason for such low performance
is due to Access Vector containing the most significant class
imbalance among the tasks, as shown in Fig. [d] For single-
task models, we found that using data rebalancing techniques
such as ROS or SMOTE can help improve the performance,
as demonstrated in RQ3 (see section [V-C)). However, it is still
unclear how to apply the current data rebalancing techniques
for multi-task learning models such as DeepCVA. Thus, we
suggest that more future work should investigate specific data
rebalancing/augmentation to address such imbalanced data in
the context of multi-task learning.

B. Threats to Validity

The first threat is the collection of VCCs. We followed the
practices in the literature to reduce the false positives of the
SZZ algorithm. We further mitigated this threat by performing
independent manual validation with three of the authors.

Another concern is the potential suboptimal tuning of base-
lines and DeepCVA. However, it is impossible to try the entire



hyperparameter space within a reasonable amount of time.
For the baselines, we lessened this threat by using a wide
range of hyperparameters of baseline models from the previous
studies to reoptimize these models from scratch on our data.
For DeepCVA, we adapted the best practices recommended in
the relevant literature to our tasks.

The reliability and generalizability of our findings are also
potential threats. We ran DeepCVA 10 times to mitigate the
experimental randomness. We confirmed our results using non-
parametric statistical tests with a confidence level > 99%. Our
results may not generalize to all software projects. However,
we reduced this threat by conducting extensive experiments
on 200+ real-world projects of different scales and domains.

VII. RELATED WORK
A. Data-driven SV Prediction and Assessment

Public security databases like NVD and expert-based SV
scoring frameworks like CVSS have provided large-scale
data to determine different properties of SVs. Bozorgi et
al. [[77] pioneered this area by developing a Support Vector
Machine model to predict when SVs would be exploited. After
that, SV information on NVD has been utilized to infer the
types [78l], severity level [79]] and exploitability [80] of SVs.
Recently, many studies [8]], [7], [81], [82] have used data-
driven techniques to obtain various CVSS metrics for SV
assessment from SV reports on NVD. Other studies [83], [84]
have leveraged code patterns in fixing commits of third-party
libraries to assess SVs in such libraries. Our work is funda-
mentally different from these previous studies since we are
the first to investigate the potential of performing assessment
of all SV types (not only vulnerable libraries) using commit
changes rather than bug/SV reports/fixes. Our approach allows
practitioners to realize the exploitability/impacts of SVs in
their systems much earlier, e.g., up to 1,000 days before (see
section [I=B)), as compared to using bug/SV reports/fixes. Less
delay in SV assessment helps practitioners to plan/prioritize
SV fixing with fresh design and implementation in their
minds. Moreover, we have shown that multi-task learning, i.e.,
predicting all CVSS metrics simultaneously, can significantly
increase the effectiveness and reduce the model development
and maintenance efforts in commit-level SV assessment.

B. SV Analytics in Code Changes

Commit-level prediction (e.g., [13], [22], [85]) has been
explored to provide just-in-time information for developers
about code issues, but such studies mainly focused on generic
software defects. However, SV is a special type of defects [86]
that can threaten the security properties of a software project.
Thus, SV requires special treatment [87] and domain knowl-
edge [88]]. Meneely et al. [[11]] and Bosu et al. [89]] conducted
in-depth studies on how code and developer metrics affected
the introduction and review of VCCs. Besides analyzing the
characteristics of VCCs, other studies [14], [15], [90] also
developed commit-level SV detection models that leveraged
software and text-based metrics. Different from the previous
studies that have detected VCCs, we focus on the assessment

of such VCCs. SV assessment is as important as the detection
step since assessment metrics help early plan and prioritize
remediation for the identified SVs. It is worth noting that the
existing SV detection techniques can be used to flag VCCs
that would then be assessed by our DeepCVA model.

VIII. CONCLUSIONS AND FUTURE WORK

We introduce DeepCVA, a novel deep multi-task learning
model, to tackle a new task of commit-level SV assessment.
DeepCVA promptly informs practitioners about the CVSS
severity level, exploitability, and impact of SVs in code
changes after they are committed, enabling more timely and
informed remediation. DeepCVA substantially outperformed
many baselines (even the ones enhanced with rebalanced data)
for the seven commit-level SV assessment tasks. Notably,
multi-task learning utilizing the relationship of assessment
tasks helped our model be 24.4% more effective and 6.3 times
more efficient than single-task models. With the reported per-
formance, DeepCVA realizes the first promising step towards
a holistic solution to assessing SVs as early as they appear.

We plan to extend DeepCVA to other programming lan-
guages and different SV assessment metrics to make the model
even more practical for developers. We also aim to investigate
DeepCVA for SV detection and fixing tasks to provide an all-
in-one solution for practitioners to detect, assess and fix SVs.
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