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Data Preparation for Software Vulnerability
Prediction: A Systematic Literature Review

Roland Croft, Yongzheng Xie, and M. Ali Babar

Abstract—Software Vulnerability Prediction (SVP) is a data-driven technique for software quality assurance that has recently gained
considerable attention in the Software Engineering research community. However, the difficulties of preparing Software Vulnerability
(SV) related data remains as the main barrier to industrial adoption. Despite this problem, there have been no systematic efforts to
analyse the existing SV data preparation techniques and challenges. Without such insights, we are unable to overcome the challenges
and advance this research domain. Hence, we are motivated to conduct a Systematic Literature Review (SLR) of SVP research to
synthesize and gain an understanding of the data considerations, challenges and solutions that SVP researchers provide. From our set
of primary studies, we identify the main practices for each data preparation step. We then present a taxonomy of 16 key data
challenges relating to six themes, which we further map to six categories of solutions. However, solutions are far from complete, and
there are several ill-considered issues. We also provide recommendations for future areas of SV data research. Our findings help
illuminate the key SV data practices and considerations for SVP researchers and practitioners, as well as inform the validity of the
current SVP approaches.

Index Terms—Systematic Literature Review, Data Preparation, Data Quality, Software Vulnerability Prediction
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1 INTRODUCTION

SOFTWARE security is a paramount concern due to the
continued increase in cybersecurity attacks and exploits

that are affecting organizations [1]. Software security tech-
niques often focus on detecting and preventing Software
Vulnerabilities (SVs) that make their way into a software
product or deployment pipeline before release [2]. These
SVs are a unique class of software defects that introduce
security weaknesses to software and allow for malicious use
of products [3]. Due to the high importance of removing
these security defects, considerable research efforts have
been conducted towards their mitigation [4].

Software Vulnerability Prediction (SVP) is a data-driven
process for software quality assurance that aims to lever-
age historical SV knowledge to classify code modules as
vulnerable or not. The granularity of the modules can be
set as needed, such as file, function, or code snippet. This
area of research has recently surged in popularity within the
research community [4], due to its importance and value.
SVP can ensure software security early in development and
solve the incapabilities of manually assessing large-scale
software systems for potential SVs, which holds inherent
value to an organisation.

Like any data-driven process, data preparation serves
as one of the most pivotal components for SVP [5]; garbage
in, garbage out. Consequently, significant efforts need to
be expended for data collection and processing [6]. For
SVP, we require examples of both vulnerable and non-
vulnerable code for training models. Unfortunately, SV data

• R. Croft, Y. Xie, and M. A. Babar are affiliated with the Centre for Research
on Engineering Software Technologies (CREST), School of Computer
Science, University of Adelaide, Adelaide, Australia.
E-mail: {roland.croft, yongzheng.xie, ali.babar}@adelaide.edu.au

• R. Croft and M. A. Babar are affiliated with the Cyber Security Coopera-
tive Research Centre, Australia.

Manuscript received...

preparation is not a trivial task [7]. High-quality SV data
is notoriously difficult to obtain due to its natural infre-
quency [8], inconsistent reporting [9], and the unwillingness
of organisations to make their sensitive data public [10]. It
is widely recognized that data noise can severely impact the
quality of an SVP model and eventually negatively impact
the validity of the research outcomes [11], [12]. That is why
datasets are commonly listed as one of the key challenges
for this research area [4], [13]. These data quality issues, in
combination with the extreme data collection effort require-
ments, have led many to view data as the major barrier to
industrial adoption of SVP [14], [15].

However, despite the importance and difficulties of SV
data preparation for both industry and academia, there
has been relatively little effort allocated to systematically
understand the known challenges of data preparation for
SVP models and how to address them. Whilst there are sev-
eral secondary studies that have analyzed SVP research [4],
[13], [16], [17] and acknowledged the existence of problems
with the data preparation, these studies have not focused
on thoroughly investigating the data preparation related
challenges in SVP research.

Motivated by a lack of an integrated and comprehen-
sive body of knowledge on this important topic, we aim
to highlight the state of the practice of data preparation
for SVP and consequently identify the associated SV data
preparation challenges and solutions. This knowledge is
expected to assist practitioners and researchers in gaining
better understanding of the data preparation challenges in
SVP and available solutions, in order to support the devel-
opment and application of more reliable and trustworthy
SVP models. In this paper, we empirically examine and
synthesize the current practices, challenges and solutions
for SVP data preparation through a Systematic Literature
Review (SLR). We systematically select 61 peer-reviewed
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papers on SVP research. We communicate the state of the
practice for SVP data preparation techniques, the reported
data challenges of these primary studies, and the existing
solutions that researchers have used to combat these issues.
The main contributions of this research are:

• The first, to the best of our knowledge, systematic re-
view aimed at systematically developing an integrated
and comprehensive source of information regarding
SVP data preparation practices, challenges and solu-
tions,

• A taxonomy of 16 SV data challenges across six themes.
This taxonomy can be used to classify data challenges
for future SVP research and practice,

• A mapping of the identified solutions onto the data
preparation challenges as per the developed taxonomy,

• A set of recommendations on how to overcome the
identified data preparation challenges.

The key contributions of this study are expected to
help improve the state of the art and the state of the
practice of data preparation for SVP models. The findings
can raise awareness and understanding about the impor-
tant challenges of SV data preparation; such understanding
will likely assist to avoid the challenges and improve the
reliability of SVP models. Furthermore, we provide recom-
mendations to guide the future research on data preparation
and data quality assessment for SVP models. Such future
research outcomes are expected to ultimately result in more
reliable and trustworthy SVP models. The findings from
this study can also be leveraged for enhancing the existing
or developing new tools for supporting the construction
and application of SVP models in general, and the data
preparation for SVP models in particular.

The rest of this paper is organized as follows. Section 2
describes the related work and existing SVP reviews. Section
3 presents the methodology we use to conduct our SLR. The
findings of our study are presented in Sections 4, 5 and 6.
In Section 7, we provide recommendations for future SV
data considerations and research. Finally, in Section 8, we
state the applicable threats to validity of our findings, and
conclude our study in Section 9.

2 BACKGROUND AND RELATED WORK

SVP is a data-driven process that uses learning-based meth-
ods to make predictions, and hence follows the standard ML
workflow.

2.1 Data Preparation

Figure 1 displays the steps involved in a learning-based
workflow [18]. For the purposes of SVP and this study, we
consider labeling to occur before cleaning.

In our analysis of the reviewed papers, we focus on
the data-oriented steps (data collection, data labeling and
data cleaning) of the ML workflow. The first step of the ML
workflow is the model requirements phase, which identifies
the necessary requirements and applications of a model.
For our study, we consider this step as data requirements,
as it is necessary to identify the requirements of the data
used to build a model, e.g., what kind of data will be
used and from where it will be collected. Hence, these data

requirements form a necessary preliminary component of
data preparation. We collectively define the first four steps
of the ML workflow as data preparation.

Practitioners have agreed that the majority of the time
taken to construct an ML pipeline is consumed by data
preparation [6]. In the 2019 Appen State of AI survey [19], it
was reported that a majority of practitioners spend upwards
of 25% of their time gathering, cleaning or labeling data.
Despite their importance, data preparation processes have
rarely been discussed or investigated exclusively [5].

2.2 Software Vulnerability Prediction
Software Vulnerability Prediction (SVP) models aim to auto-
matically learn SV knowledge and patterns from historical
data. This knowledge can be used to make predictions
on the presence of SVs. This process was first noticeably
conceptualized in 2007 by Neuhaus et al. [20], and has
seen continual technical advancement through research ef-
forts [4].

SVP can be considered as an early form of software
security quality assurance, as a trained model can make
predictions quickly on static code artefacts, without the need
for compilation. In this sense, SVP has been compared to
static application security testing methods [21]. Ghaffarian
and Shahriari [22] categorized SVP methods into two main
approaches: models that do not analyze program syntax
and semantics, and models that do. The former utilizes
software metrics to describe the code modules of interest,
whereas the latter perform directly on source code tokens
to perform vulnerable code pattern recognition. Due to
the rising popularity of Deep Learning (DL) methods [4],
researchers have focused more heavily on approaches that
do analyze program syntax and semantics, through the use
of text-based, sequence-based or graph-based source code
feature representations [13]. Additionally, there are hybrid
approaches that utilize both software metrics and code
tokens [23].

Data preparation for SVP follows the standard workflow
for ML data preparation. SV labels are assigned to the ex-
tracted code modules to obtain a labeled SV dataset [10]. The
process is heavily dependent on the data sources selected for
the codebase and SV labels. Figure 2 displays the SVP data
preparation pipeline.

2.3 Existing SVP Reviews
With the increasing popularity of data-driven approaches
for software vulnerability analysis and discovery, several
researchers have reviewed the published SVP approaches
and techniques. We briefly describe the key focus areas of
the relevant review studies below.

Three papers by different groups of researchers, Li and
Shao [24], Coulter et al. [10], and Ghaffarian and Shahri-
ari [22], reported separate reviews of the literature on the use
of machine learning and data mining for software vulnera-
bility discovery and analysis. Coulter et al. [10] provided
a more general framework for data-driven cybersecurity
tasks, including SVP, whereas Li and Shao [24] and Ghaf-
farian and Shahriari [22] focused on the specific features
and approaches. Le et al. [25] also conducted a survey of
data-driven methods for SV assessment and prioritization,
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Fig. 1. The machine learning workflow. Adapted from Amershi et al. [18].

Fig. 2. The SVP data preparation pipeline.

but they did not consider SV discovery. With the success of
DL in fields such as image processing, speech recognition,
and natural language processing, researchers have been
increasingly motivated to apply DL for the SVP domain.
Lin et al. [13], Singh and Chatuvedi [26], and Zeng et al. [16]
all conducted an analysis of the deep learning techniques
used by researchers for SVP.

To the best of our knowledge, only two studies have
been published that focus on systematically reviewing SVP
research and knowledge: Semasaba et al. [17], and Hasif et
al. [4]. The former exclusively investigated Deep Learning
techniques, whereas the latter provided a wider view of SV
detection, including non–learning based techniques. Similar
to the previous secondary studies, the analysis of these
systematic reviews focused on the models, techniques and
features. Furthermore, all existing secondary studies for SVP
focused on the model-oriented steps of the ML workflow,
particularly features and techniques (steps 5-6 of Figure 1).

To this extent, there has been a little focus on the data-
oriented processes. The SV data used to train a model is
the most imperative component of this data-driven process.
Although most studies have reported data preparation and
data quality as significant issues for this research area [4],
[10], [13], [16], [17], [24], they have not performed in-depth
analysis of the data quality in SVP research to determine the
encountered issues or potential solutions. This knowledge
gap fails to provide practitioners and researchers with the
specific insights needed to remediate data quality issues.
It is vital to gain a better understanding of the quality of
data utilized for SVP research; such comprehension is also
expected to improve our abilities to better understand how
well the SVP approaches work in practice.

Hence, an effort like ours can be of great importance
as it not only highlights the critical research gap, but also
contributes to the evidence-based body of knowledge of
data preparation for SVP models. Whilst existing reviews
have yielded important insights into this research domain,
our systematic review has been motivated by several unique
research questions whose answers have enabled us to pro-
vide novel findings and potentially useful insights. The
knowledge produced by our SLR can be an important

complementary piece to the existing secondary studies for
providing a consolidated picture of the published literature
on different components of the SVP pipeline.

3 RESEARCH METHODOLOGY

To obtain insights into the SVP data preparation processes,
challenges and solutions, we conducted an SLR of SVP
literature. Our findings will potentially be useful to both
researchers and practitioners for providing guidance for
future SV data preparation and in assessing the validity of
existing SV datasets.

To conduct this SLR, we followed the methodological
guidance provided by Kitchenham et al. [27] and Zhang et
al. [28] to ensure that our assessment of the existing litera-
ture was unbiased and repeatable. The research method was
conducted in close collaboration by the first two authors,
with guidance from the third author.

Figure 3 presents the complete search and study selec-
tion workflow, and the number of retrieved papers at each
stage. The search and study selection process was conducted
in February 2021. We obtained a total of 61 studies from
our study selection process, which are presented in the
Appendix.

To guide our analysis, we aimed to address the three
Research Questions (RQs) presented in Table 1.

Fig. 3. Stages of the study selection process.
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TABLE 1
Research questions addressed in this study.

Research Question (RQ) Motivation
RQ1. What considerations do re-
searchers make for each of the data
preparation processes when construct-
ing SVP datasets?

We investigate the SVP data preparation practices and choices reported by researchers to help
inform the state of the practice and reasoning. The embodiment of this knowledge helps provide
workflow guidance for researchers and practitioners, and assists them to identify the important
decisions and reasoning when selecting or building an SV dataset.

RQ2. What are the considered chal-
lenges and issues for SV data prepara-
tion and datasets?

We aim to analyse the reported data challenges to provide an overview of the issues that
researchers face when performing SV data preparation or using SV datasets. The results of
this RQ will help guide the decisions made by researchers when selecting their data preparation
steps, and inform practitioners of the current issues and limitations of the reported empirical SV
analysis and prediction.

RQ3. How do researchers address
dataset issues and preparation chal-
lenges?

This RQ builds upon the findings of RQ2 to analyse the remediation techniques that researchers
have used to help overcome the aforementioned challenges. Hence we not only provide
a categorization of data challenges for SV-related research, but we also map the solutions
that researchers have used to address these issues. These findings can help researchers and
practitioners overcome data challenges in the future.

TABLE 2
Formulation of the search string.

Category Subject Search Terms
Population Software “software” OR “code”

Intervention Machine Learning “learn” OR “neural network” OR “artificial intelligence” OR “AI-based” OR “predict”
Static Application NOT (“fuzz” OR “test” OR “attack” OR “adversarial” OR “malware” OR “description”)

Comparison - -
Outcomes Software Vulnerability

Prediction
“vulnerability” AND (“predict” OR “detect” OR “classify” OR “identify” OR “discover” OR “uncover”
OR “locate”)

3.1 Search Strategy
We began with a search strategy to extract all potentially
relevant research papers from academic digital libraries.

To design the search string, we utilized the PICO
(Population, Intervention, Comparison, Outcomes) frame-
work [29]. The Comparison component was not applicable to
our review because our goal was not to conduct comparison
of software with different interventions. Table 2 presents the
key terms for each PICO component; we formed our search
strings through the union (AND) of the PICO components.
We altered the search string suitably to match the differences
in the search capabilities of each database. When applicable,
we matched the relevant keywords in the title, abstract
and keywords of the papers, except for exclusion keywords
(prefaced with NOT) which were only matched in the ti-
tle. Wildcard matching was performed to capture different
word variants when available; otherwise we defined the
term variants manually, e.g., predict and prediction. When
available, we applied additional search filters to match the
exclusion criteria defined in Section 3.2.1 (i.e., limiting to
English articles or research papers.) Table 2 only defines
the base strings. To find these strings, we consulted papers
included in the previous reviews. The full search strings are
available in our online appendix1.

We applied this search string to the two most frequently
used academic digital libraries for software engineering, as
identified by Zhang et al. [13]: IEEE Xplore, and ACM digital
library. We then additionally included SCOPUS as it is the
largest academic literature database available [25], which in-
dexes several other smaller academic databases. We did not
use other search engines such as Google Scholar due to the
amount of noise in the search results and need for subjective

1https://github.com/RolandCroft/SVP Data SLR Appendix/
blob/main/Search Strings.md

stopping conditions. We initially retrieved 1542 studies: 1118
studies from SCOPUS, 357 studies from IEEE Xplore, and
67 studies from ACM Digital Library. We downloaded all
retrieved studies and then manually removed duplicates,
which reduced the total number of studies to 1187.

3.2 Study Selection

We sought to select any paper on the topic of Software
Vulnerability Prediction (SVP), which we have defined as
any model utilising supervised learning-based techniques
(ML or DL) for prediction, detection or discovery of an
SV in a static code module. We included any study that
contributes an SVP model, process or evaluation based on
our definition of SVP.

Our definition of SVP hinges on three major principles:
learning-based, vulnerability discovery, and static code artefacts.
Firstly, we have defined learning-based as the use of a
supervised ML or DL algorithm that can learn from training
data to make predictions on a dataset [31]. To this extent,
we did not include anomaly detection, unsupervised meth-
ods, or studies that focus on pure statistical or correlation
analysis. Secondly, the study must have utilized a model
that aims to discover unknown SVs within a code artefact.
This excluded methods that used code clones or similarity
detection, as these methods are only able to detect a pre-
defined set of SVs and are unable to discover new types.
We also did not consider malicious code as SVs. Thirdly,
we only included studies that used static code artefacts to
make predictions; either source code, code binaries or an
intermediary representation. Hence, we excluded any study
that requires runtime analysis of the code (e.g., dynamic
testing or attack detection).

https://github.com/RolandCroft/SVP_Data_SLR_Appendix/blob/main/Search_Strings.md
https://github.com/RolandCroft/SVP_Data_SLR_Appendix/blob/main/Search_Strings.md
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3.2.1 Inclusion/Exclusion Criteria
The inclusion/exclusion criteria we adopted, displayed in
Table 3, were inspired by similar studies [30], [31].

TABLE 3
The inclusion/exclusion criteria.

Inclusion Criteria
I1. The study relates to the field of SVP, and informs the practice
of Software Engineering.
I2. The study presents a unique SVP process or evaluation.
I3. The study is a full paper longer than six pages.
Exclusion Criteria
E1. Solely a literature review or survey article.
E2. Non peer-reviewed academic literature.
E3. Academic articles other than conference or journal papers,
such as book chapters or dissertations.
E4. Studies not written in English.
E5. Studies whose full-text is unavailable.
E6. Studies published to a venue unrelated to the discipline of
Computer Science.
E7. Studies that are published to a journal or conference with a
CORE ranking of less than A and H-index less than 40, and that
have a citation count of less than 20.

To ensure that we obtained a set of high-quality papers,
we adopted a venue assessment approach (E7) used by Sabir
et al. [32]. We removed the studies published in low quality
venues: venue ranking below A using the CORE ranking
system2,3, and h-index below 40 as recorded in the Scimago
database4. However, the original influential papers of this
domain may have been published in low quality venues.
Hence, we only excluded a paper based on venue if it had
also not been cited frequently (<20 citations). The citation
count is obtained through Google Scholar5. The first two
authors collaboratively determined suitable thresholds for
this criterion through an initial pilot study of 100 papers,
to confirm that any papers excluded through this criterion
were indeed of lower quality.

We first excluded 1015 studies using information ex-
tracted from the title, abstract and keywords. We then
excluded an additional 115 studies after processing the full
text and metadata (i.e., venue, article type, citations) to
obtain a set of 57 studies.

3.2.2 Quality Assessment
For SLRs, it is vital to assess the quality of primary studies
to ensure that we form a proper and fair representation
of the research works [27]. We conducted the assessment
process using a quality checklist, and excluded any study
that did not pass the checklist. We adopted the quality
checklist defined by Hall et al. [33], and refined by Hosseini
et al. [30] in their SLR of defect prediction models, as the
defect prediction process shares similarities with SVP. This
resulted in three stages of assessment: the data, the predic-
tion model details, and the evaluation criteria, displayed in
Table 4. Although our study only considers data preparation
for analysis, we assessed all three criteria to determine the
overall quality of the paper. We removed a total of four
studies that did not pass the quality assessment criteria.

2http://portal.core.edu.au/conf-ranks/
3http://portal.core.edu.au/jnl-ranks/
4https://www.scimagojr.com/journalrank.php
5https://scholar.google.com.au/

TABLE 4
The quality checklist.

Data Criteria
DC1. The data source must be reported. If a publicly available
dataset is used, the name must be reported.
DC2. A description of the data, such as its size, programming
language and class distribution, must be provided.
DC3. The process in which the independent variables are ex-
tracted from the data as input to the model must be clearly
stated.
DC4. The method in which the data is labeled as vulnerable and
non-vulnerable must be clearly stated.
Prediction Model Details Criteria
MC1. The output of the model must be clearly defined.
MC2. The granularity of the dependent variable(s) must be
reported.
MC3. The machine learning method and approach must be
clearly reported.
Evaluation Criteria
EC1. The performance measure of the model must be reported.
EC2. The predictive performance values must be clearly pre-
sented in terms of raw performance numbers, means or medi-
ans.

3.2.3 Snowballing
It is expected that an initial automated search strategy will
be unable to identify all relevant studies, as the search string
cannot identify obscurely phrased studies, and the digi-
tal libraries selected do not exhaustively include all peer-
reviewed literature [34]. Hence, after we conducted initial
study selection, we utilized manual search processes, both
forward and backward snowballing, to obtain additional
relevant studies that were not contained in our selected
digital libraries or identified by our automatic search. For-
ward and backward snowballing identify additional rele-
vant studies from papers that cite or are included in the ref-
erence lists of the set of included studies, respectively [34].
These identified papers were similarly assessed using the
inclusion/exclusion criteria and the quality assessment cri-
teria. We included an additional eight papers in the final set
through the snowballing process.

Our final article pool contained 61 studies; 53 studies
which passed the initial selection process and eight ad-
ditional snowballed papers. The studies are listed in the
Appendix.

3.3 Overview of the Primary Studies
Figure 4 displays the number of selected SVP papers over
the years. We have not reported values for 2021 as this data
is incomplete. We observed that this area of research has
received exponential popularity within the last two years.
This indicates that this is an area undergoing huge growth at
the time of this study. Hence, our review contributes impor-
tant and timely value to this emerging area by synthesizing
the current knowledge of the underlying data preparation
processes for these empirical studies.

3.4 Data Analysis
3.4.1 Data Extraction
We used the a data extraction form and data extraction pro-
cesses outlined by Garousi and Felderer [35] and Kitchen-
ham et al. [27]. Our data extraction form, provided in our

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/jnl-ranks/
https://www.scimagojr.com/journalrank.php
https://scholar.google.com.au/
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Fig. 4. The number of selected primary studies by year.

online appendix6, consisted of 50 fields describing all data
related steps reported by the authors and the details of their
dataset(s). These fields consisted of five checkbox questions,
29 multiple choice questions, nine short answer questions,
and seven long answer questions. Thirty seven of the 50
fields pertained to the first RQ, and the other 13 collectively
related to the latter two RQs. The data extraction form was
completed collaboratively using Google Sheets.

An initial pilot study of 10 papers was conducted collab-
oratively by the first two authors to help design the form
and ensure author agreement [35]. The first two authors
then performed data extraction individually; the paper set
was divided in half randomly for each author to complete.
After this process was completed, each author reviewed the
data extraction outputs of the other author to ensure consis-
tency. Disagreements were resolved through discussion.

3.4.2 Data Synthesis

The aim of an SLR is to aggregate information from primary
studies [27]. For RQ1, we qualitatively examined the outputs
of our data extraction form to identify and report the major
factors relating to each of the four data preparation steps.

For RQ2 and RQ3, we used thematic analysis to syn-
thesize the data [36]. Specifically, this process was used to
identify the data challenges and solutions reported in the
primary studies. Any discussion in a paper that explicitly
had mentioned a challenge pertaining to the data, resolved
or unresolved, was coded. To ensure that this qualitative
coding was grounded by the data, and not affected by
any biases of the data extraction form, we imported the
full papers into Nvivo [37], a qualitative data analysis tool,
and performed coding on the papers directly. We followed
the steps for thematic analysis developed by Braun and
Clarke [36]:

1) Familiarizing with data: The initial familiarization was
done through the data extraction phase (Section 3.4.1)
in which the first two authors read each full paper and
filled the data extraction form. This familiarized the first

6https://github.com/RolandCroft/SVP Data SLR Appendix/
blob/main/Data Extraction Form.pdf

two authors with the relevant factors relating to SV data
that were discussed in the papers.

2) Generating initial codes: To generate initial codes, we
used open coding of the relevant text in the primary
studies using Nvivo. The data was broken down into
smaller components and labeled using a code [36],
where a code is a word or phrase that acts as a label for
a selection of meaningful text in the paper. This process
was completed iteratively, with the initial codes being
revised and merged in later rounds. Each primary study
was usually allocated to more than one code or theme,
as each paper can discuss multiple SV data challenges
and coding was done on small individual components
of the papers.

3) Searching for themes: We reviewed all the codes and
sorted them into themes. As data challenges revolve
around data quality, we used existing data quality
dimensions [38], [39] to identify potential groupings
that the codes might fall under.

4) Reviewing themes, defining and naming themes: This pro-
cess involved reviewing all the codes and themes, and
revising their allocations.

5) Producing the report: We present the findings of our
thematic analysis in Sections 5 and 6.

4 SV DATA PREPARATION CONSIDERATIONS
(RQ1)
We first provide an overview of the considerations that re-
searchers have made when performing SV data preparation
processes, which we have identified qualitatively through
our data extraction process. This documentation of the
considerations helps to inform practitioners and researchers
of the state of the practice. Furthermore, it can assist these
users to better understand how to construct an SVP dataset,
and the important aspects to scrutinize. Figure 5 displays
the main decisions that need to be made for each data
preparation step.

Fig. 5. SVP data preparation step considerations.

4.1 Data Requirements
In the data requirements phase, the requirements for the
data to achieve the desired model context and capabilities

https://github.com/RolandCroft/SVP_Data_SLR_Appendix/blob/main/Data_Extraction_Form.pdf
https://github.com/RolandCroft/SVP_Data_SLR_Appendix/blob/main/Data_Extraction_Form.pdf
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are specified. There are four main components of the data
requirements that need to be specified for SVP:

Programming Language(s). Researchers are motivated
to explore different approaches to mitigate security risks
aroused for different languages. As seen in Figure 6, C/C++,
PHP and Java have been the most commonly investigated
languages among the primary studies.

Fig. 6. The number of primary studies for each programming language.

C/C++ has been most frequently chosen for analysis as
it has a lower level of abstraction and is commonly used
to build security critical applications [P4, P16, P54, P58].
PHP has been commonly used for programming web appli-
cations, which are highly susceptible to vulnerabilities and
exploits [P1, P6, P25, P41, P50, P55], and hence researchers
have aimed ensure its security. Java has also been commonly
chosen as it is overall one of the most popular programming
languages [P39, P40, P46].

Vulnerability type(s). Similar to the previous consider-
ation, researchers may target detection capabilities towards
certain SV types. However, we observed that the majority of
methods are capable of detecting a variety of SVs. Over 45%
of studies (28 out of 61) did not even report the types of SVs
present in the data, and researchers were often limited to the
SV types present in their SV label source. However, some
studies chose to restrict their analysis to more critical SVs of
interest. For example, Fidalgo et al. [P6] and Shar and Tan
[P25] focused their analysis on SQL injection and cross-site
scripting (XSS) as these are common critical web application
vulnerability types. Wang et al. [P29] and Ghaffarian and
Shahriari [P39] limited their studies to just the CWE Top-
25 vulnerabilities7. Saccente et al. [P34] identified that a
model trained to predict any SV type produces unreliable
predictions in comparison to a model trained to predict just
one type. However, the impacts of this data requirement
decision on model efficacy are otherwise largely under-
explored.

Code module granularity. The granularity of vulner-
ability detection has significant impact on a model and
data collection. Depending on the granularity of the inputs
used for an SVP model, it can either be used to direct

7https://cwe.mitre.org/top25/archive/2021/2021 cwe top25.
html

testing efforts by predicting which large scale components
are potentially at risk [15], or to explicitly detect fine-grained
components that contain vulnerabilities [24]. In our set of
primary studies, we identified six levels of granularity (in
descending order of granularity): 1) component level, 2)
file/class level, 3) function/method level, 4) program slice
level, 5) statement level, 6) commit level. In Figure 7, other
than the component-level, the larger granularities are shown
to be of more popularity. The file level has been considered
as the standard granularity for SVP research [P12, P36, P46]
and has been confirmed as actionable by developers [P5].
However, researchers have recently begun to favor finer
granularities as they better enclose the scope of vulnerable
code snippets, and are more easily inspected [P2, P3, P10,
P15, P31, P32].

Fig. 7. The number of primary studies for each level of granularity.

Application contexts. There are three main vulnerability
detection application contexts: within-project, cross-project,
and mixed-project, in which each have different require-
ments. For within-project prediction, both the training data
and the testing data come from the same project. In contrast,
for cross-project prediction, there is an assumption that there
is an insufficient amount of training data available in the
target project. Therefore, labeled data from other source
projects are used for training. More than one dataset can
be collected to compensate for the inadequacy of labeled
data in the target project. Mixed-project prediction is a
special case of the cross-project setting. The labeled data
from multiple projects are combined together to produce
sufficient data for both model training and testing. This
differs from the cross-project setting in which data from
other projects only comprise the training dataset.

Within-project prediction has proven to be the more pop-
ular prediction context, with 52% (32 out of 61) of the pri-
mary studies forming their datasets from a singular project.
This is because researchers have considered within-project
prediction to be the standard use case of SVP [P5, P36].
Furthermore, cross-project prediction has often performed
poorly due to differences in data distribution of the source
and target project(s) [P1, P12, P26, P39, P56]. Only 18 of the
primary studies considered cross-project prediction, 13 of

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
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which also considered within-project prediction. However,
due to the various data issues that we will discuss in Section
5, several researchers have considered the reuse of existing
datasets from other projects to be a necessity [P1, P10, P18,
P21, P22, P26, P31, P37, P41, P43, P56]. Twenty three of the
primary studies (38%) performed mixed-project prediction
and did not exhibit consideration for the projects that form
their dataset.

4.2 Data Collection
SV datasets can be categorized into three main areas based
on the type of data sources used to generate the code
modules: real-world data, synthetic data, and mixed data.
The type of data is the main influence on how the data is
collected.

Real-world data. Both the code and the correspond-
ing vulnerability annotations have been derived from real-
world repositories. The code has been typically collected
for projects hosted on repository hosting sites, such as
GitHub [40], or through a different version control system.
Experiments conducted using this data are usually consid-
ered to be better representative of industrial application
because of the reflection of the complexities of the real-
world vulnerabilities [41].

Synthetic data. The vulnerable code examples and the
labels have been artificially created. The examples from
these data sources are synthesized using known vulnerable
patterns. Synthetic datasets include SARD [42], OWASP
Benchmark [43], and SQLI-Labs [44]. These datasets were
originally used for evaluating traditional static and dynamic
analysis based vulnerability prediction tools, due to their
large test suite size and noise-free information.

Mixed data. Several researchers have opted to create
datasets by merging both real-world and synthetic data
sources [P32, P44, P48]. This is typically done to achieve
a sufficient dataset size whilst maintaining a certain level
of real-world representation. Mixed datasets have been pri-
marily constructed for DL-based studies [P32, P44], which
are particularly data hungry in comparison to ML.

Fig. 8. The proportion of primary studies for each data source type.

Figure 8 displays the number of primary studies that
use each data type. Real-world datasets have been consid-
ered the de facto type of data sources in this domain by

researchers, primarily as they better represent real-world
scenarios than synthetic examples [41]. The representative-
ness of a dataset is an important consideration as it helps
improve the generalizability and validity of findings [45].
Studies have further claimed that the code patterns of
synthetic test cases follow a similar coding format, failing
to reflect the characteristics of code patterns in production
environments [P2 ,P3, P9, P29, P31, P39, P42, P43, P61].

However, there are two primary positive traits of syn-
thetic datasets. Firstly, there are a much larger number of
labeled synthetic samples that are able to be created in com-
parison to real-world examples [P8, P23, P34, P38, P39, P44,
P54]. SVP is a data-hungry process that requires a sufficient
amount of training data [4]. The existence of their labels also
significantly reduces the effort of data preparation [P3, P6,
P10, P39, P40]. Secondly, as the code samples are generated
with their labels, the labels are more clean and reliable than
data extracted from noisy real-world repositories [P39, P40],
for reasons discussed in the following section.

4.3 Data Labeling

Fig. 9. The ratio of SV data label sources. A study may use more than
one label source.

For SV data, labels categorize whether a code module
is vulnerable or not. Data labeling involves extracting data
labels using an external source or tool, to assign to the
collected code modules. We observed three SV label sources,
that align with the findings of Chakraborty et al. [41]:
developer-provided, automatically generated, and pattern-
based. Figure 9 displays the ratio of these three SV label
types. The choice of labeling approach is often dependent
on the data source type collected, as outlined in Section 4.2.
Hence, the relative frequency of each method is similar to
that of Figure 8.

Figure 10 displays the labeling process using developer
provided labels. These labels have been extracted from
vulnerabilities that have been identified by developers and
reported in security advisories or issue tracking systems,
such as NVD [46], Jira [47] or Bugzilla [48]. Whilst these
information sources are usually accurate, it is not the same
as developers hand-labeling code modules, as patches do
not directly equate to labels. Researchers have expended
significant effort to trace the label source to the code mod-
ules [P2, P18, P29, P43, P61]. This involves identifying the
relevant vulnerability reports, extracting code fixes, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 10. The SV labeling process using developer provided SV labels.

localizing these fixes to the relevant granularity and code
modules, with each step introducing potential noise to the
labels. Labeling of the non-vulnerable class is also quite
subjective in this scenario, as there is no associated label
source for this class. Consequently, it is a form of weak
supervision [49] that can introduce inadequacies into the
data.

Automatically generated labels have not relied on a
third-party label source, but instead have used an additional
oracle to provide labels directly for the collected code mod-
ules. Two of the primary studies used static analysis tools
to provide labels to code datasets [P37, P46]. This approach
is noticeably the least considered as it heavily relies on the
accuracy of the oracle used for labeling.

Pattern-based labels have been obtained for synthetic
data sources, that use SV patterns to generate both the code
modules and labels. The goal of an SVP model applied to
this synthetic data and label source, is to re-learn the pat-
terns that generated the code modules of each class. These
labels are largely considered noise-free, unlike the other
two approaches, as the modules and labels are inherently
connected.

4.4 Data Cleaning

Data cleaning is the fourth step of data preparation. Whilst
data cleaning is important, it is the only data preparation
step that is non-essential. Collected code can be labeled and
used immediately if it is extracted in an appropriate format.
Hence, we observed that not all of the primary studies have
discussed this step; nor has it been discussed in as much
detail as the other steps.

Code modules are the raw data for SVP, so the data
cleaning step involves processing collected code modules so
that they are in an appropriate format for feature extraction.
Table 5 lists the common data cleaning approaches that we
observed from the reviewed primary studies. The cleaning
approaches fall under three issue types: irrelevant code,
code noise, and duplication.

Irrelevant Code. Firstly, irrelevant code has been com-
monly removed from the collected code modules. For all of
the primary studies, this involves removing any code that
was not of the target programming language, and removing
any code that did not fall under the target granularity, such
as code not contained in functions for the function-level
granularity. Some studies also removed code that was not
of relevance to the project or not at risk, such as test cases,
third-party code modules, code scripts, and make files [P1,
P4, P30, P56].

TABLE 5
Common data cleaning approaches for SVP datasets.

Issue Cleaning Approaches

Irrelevant Code
• Remove code that is not of the target
programming language(s).
• Remove code that is not of the target
granularity.
• Remove irrelevant code files: test cases,
third-party-code, scripts and make files.

Code Noise
• Remove blank lines, non-ASCII characters
and comments from the code.
• Ignore code with syntax issues or errors.
• Replace the user-defined variable and
function names with generic tokens.

Duplication • Remove highly correlated items.
• Remove the duplicated code.

Code Noise. Secondly, some studies have further pro-
cessed the collected code to remove the potential noise in
the data that may impact the created features. These steps
are only of value to the studies that extract the features
directly from the code tokens, while software-metrics are
usually robust to such code noise. Several studies removed
comments, blank lines and non-ASCII characters [P1, P10,
P20, P28, P32, P34, P44, P56], as these are not relevant to
SVs. Some studies also replaced user specific tokens, such as
user-defined variables, function names, and string literals,
with generic tokens to increase the homogeneity of the
features [P7, P23, P28, P29, P32, P50, P56]. Some studies also
removed the code that they found to have syntax issues
or errors [P9, P50], as this may later impact the feature
extraction efforts.

Duplication. Thirdly, several studies have attempted to
remove the duplicated code modules, as duplicate entries
may introduce bias into a produced model [50]. Duplicate
code modules can be present due to multiple of the same
code file, snippet, or software version being collected [P1,
P8, P15].

5 DATA CHALLENGES (RQ2)
This section identifies the data challenges that researchers
have reported in the primary studies, in relation to the data
preparation steps. As discussed in Section 3.4.2, we used
thematic analysis to analyze the data quality issues that re-
searchers have explicitly reported. These issues were coded,
revised and merged by the first two authors of this study.
The themes that we have identified are inspired by existing
data quality dimensions [38], [39], as data challenges revolve
around data quality. Table 6 details the key data challenges
and considerations that we observed through our analysis.
The data challenges can be summarized as pertaining to
data Generalizability, Accessibility, labeling Effort, Scarcity,
and both Label and Data Noise.

5.1 Generalizability

Generalizability describes the ability for data to extend
to other contexts, both in terms of findings and applica-
tion [39]. Hence, this largely measures the external validity
of the produced analysis, based on the data. This challenge
primarily involves the data requirements step, as this is
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TABLE 6
Taxonomy of SV data challenges identified from the primary studies.

Theme Challenge Key Points Paper ID #

Generalizability

Ch1: Real-World Representation • Synthetic data is not representative of
real-world code

P[2-3, 9, 29, 34, 39, 60]

43Ch2: External Generalization
• Data may be language specific P[1-2, 11, 15, 20-23, 26, 30, 32,

38, 41-42, 44, 46-47, 55-57,
60-61]

• Data may be application or domain specific P[1, 4-5, 11-13, 19-22, 30, 35-36,
40-42, 46, 52, 55-57, 59]

• Data may be specific to vulnerability type P[15, 24, 26, 32, 38, 61]

Ch3: Completeness
• SVs may span code modules P[1, 3, 7, 10, 15, 21, 31, 45]
• Code representation may have limited scope P[1, 3, 8, 13, 32, 44]
• SVs may be present in non-targeted code files P[1, 12, 20, 46, 53, 57]

Accessibility

Ch4: Cold-Start Problem • SVs are required to have originally occurred P[4, 10, 21-22, 31, 37, 41, 56]

25

Ch5: Data Entry Availability • Not all data entries are obtainable P[1, 5, 11-13, 20-21, 30, 45, 49,
56]

• Usage of Version Control Systems is unstable P[1, 12, 56]

Ch6: Data Privacy • Source code and SV data are required to be
available

P[9-10, 16, 26-27, 32, 37-38, 45,
48, 61]

• Security advisories can be private or vague P[1, 13, 56]

Effort
Ch7: Labor Intensive • Manual labeling is highly time-consuming P[2, 10, 18, 26, 29, 31, 39, 42-43,

61] 14

Ch8: Expertise Requirements • Manual labeling requires high expertise P[2, 18, 31, 43]
• Vulnerabilities are difficult to identify P[20, 30, 33-34, 42-43]

Data Scarcity Ch9: Data Imbalance • Vulnerable samples are the extreme minority P[1, 4-5, 8-9, 11-12, 14-15, 17,
19-20, 22, 24, 30-31, 33, 36, 40,
45, 50, 53-56, 60] 32

Ch10: Number of Samples • Low number of vulnerability samples P[1, 4, 10-11, 15, 20, 23, 29-31,
33-34, 36, 45-47, 50]

Label Noise

Ch11: Incomplete Reporting • Latent, dormant or unresolved SVs can exist
in the dataset

P[1, 4, 11-13, 16, 19, 21, 28, 30,
36-37, 47, 56, 59-61]

31

• SVs can be silently patched P[4-5, 12, 30, 33, 36, 40, 47, 52,
56]

Ch12: Localization Issues

• Commit noise causes localization issues P[1, 16, 29, 42]
• Data noise causes localization issues P[2, 8, 13, 28, 32, 44]
• Bug reports do not document code location P[28, 30, 33, 42, 56]
• Version tracking is complex and erroneous P[1, 24, 30, 56]

Ch13: Erroneous labeling

• Manual labeling can be inaccurate or
subjective

P[11, 18, 40, 43, 52, 56]

• Static analysis tools label modules
inaccurately

P[2, 46]

• SVs may not actually be exploitable P[1, 52]
• Label quality is unknown P[24, 28, 32]

Data Noise

Ch14: Code Noise • Source code has stylistic differences or
syntax issues

P[7, 9-10, 13, 18, 20, 23, 28-29,
32, 34, 38, 41, 50-51, 61]

35
• Binary code is noisy P[27, 48, 53]

Ch15: Redundancy
• Some entries are indistinguishable between
classes

P[49]

• Code versions and localization can add
redundancy

P[1, 8, 12, 15, 19-20, 24, 30, 42,
46]

• Vulnerable samples have limited diversity P[14, 28, 40]

Ch16: Heterogeneity • Data contains outliers P[25, 42]
• Poor cross-project performance P[1, 12, 26, 39, 56]

the phase where researchers determine the nature of their
dataset.

Ch1: Real-World Representation. Most of the challenges de-
scribed in Table 6 arise when using real-world data. Conse-
quently, several researchers have opted to use synthetically
created data to construct their models, as described in Sec-
tion 4.2. Synthetic datasets are artificially crafted to address
the data challenges present in the real-world data; these data
sources are accessible, large, low-effort to use, and the labels
have less noise. As such, they are an attractive option for
researchers.

Given synthetic data may not represent the real-world
data, it is considered a big limitation that may render such
a dataset unusable unless this limitation is addressed. Syn-
thetic vulnerability examples are considered to be simpler,

isolated, less diverse and cleaner than real-world vulnerabil-
ities [P2, P3, P9, P29, P34, P39, P60]. Zheng et al. [P29] found
that the use of synthetic data sources may significantly
inflate the reported model performance in comparison to the
models using real-world code. Hence, a model trained using
synthetic data is unlikely to be able to detect complex real-
world vulnerabilities, which require much deeper semantic
understanding and reasoning [41]. Thus, real-world data is
more commonly used data source, as seen in Figure 8.

Ch2: External Generalization. Nearly all studies face external
threats to validity of their findings inferred from a specific
dataset. In terms of SVP research, this relates to the limited
application scope of the selected study datasets. Datasets
may be specific to, and hence have troubles generalising
outside of: programming language [P1, P11, P15, P20, P21,
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P22, P23, P25, P26, P30, P32, P38, P41, P42, P44, P46, P47,
P55, P56, P57, P60, P61], application or domain type [P1, P4,
P5, P11, P12, P13, P19, P20, P21, P22, P30, P35, P36, P40,
P41, P42, P46, P52, P55, P56, P57, P59], and SV type [P15,
P23, P26, P32, P38, P61].

Ch3: Completeness. Completeness is achieved when a dataset
has all the relevant parts of an entity’s information, which
is sufficient to represent every meaningful state of a real-
world system [39]. However, the selected data for analysis
can have a limited scope of the overall system, which
makes their application context limited. This data-oriented
consideration serves as a challenge for SVP, as it prevents
these models from forming a “complete” solution. Firstly,
if the selected granularity of code modules is too fine,
researchers are forced to ignore vulnerabilities which span
multiple modules [P1, P3, P7, P10, P31, P45]. For instance,
function-level prediction is unable to predict more complex
SVs that span multiple functions. The selected semantic
representation of data may also not consider all sources
of weaknesses in a software system [P3, P8, P32, P44]. For
instance, Tian et al. [P3] and Li et al. [P8] only consider code
snippets of library and API function calls, which would
not cover all potential SVs in a system. Static source code
is also unable to capture certain necessary dynamic code
traits [P1, P13], such as crashes and memory leaks. Simi-
larly, vulnerabilities may be present in code modules which
are not of the target programming language of analysis
[P1, P12, P20, P46, P53, P57]. In the modern development
landscape projects commonly utilize multiple programming
languages [51], but SVP models are largely targeted towards
a single programming language of choice [P53].

5.2 Accessibility

Accessibility describes the ability to retrieve or obtain data
from the target data sources [52]. Challenges arise from
difficulties in accessing the data, either of the raw code
modules during the data collection step or of the data labels
during the data labeling step.

Ch4: Cold-Start Problem. The cold-start problem is an issue
originating from recommender systems in which a system
is unable to draw inferences about incoming modules for
which it has not yet gathered sufficient information [53].
In terms of SVP, the cold-start problem has been partic-
ularly present, as to make future predictions, we require
vulnerabilities to have originally occurred and to have been
documented [P4, P10, P31]. This makes SVP largely infeasi-
ble for new or immature organisations [P10, P21, P22, P31,
P37, P41, P56]. Furthermore, the acquisition of initial high-
quality training data is a major issue, as seen in the other
challenges.

Ch5: Data Entry Availability. Since a majority of SV data have
been obtained through mining open source repositories, not
every part of a system would be necessarily accessible to
researchers. For instance, some source code might have been
unavailable to the public for mining [P1, P11, P12, P20], or
unobtainable due to other technical reasons [P5, P21, P45].
Similarly, some vulnerability reports might not have been

able to be localized to code modules due to issues in the
automatic or manual localization methods [P1, P13, P30,
P49, P56].

Some researchers have even pointed out that the reliance
on a version control system to track code modules causes
issues in itself, as consistent usage of a version control
system is unstable [P1, P12, P56]; version control systems
were only widely adopted in 2005 with the introduction of
git, hence data before this date would be irretrievable [P12,
P56]. Furthermore, organisations might switch the version
control system they were using, losing previous software
history [P1].

Ch6: Data Privacy. The potential commercial sensitivity of
both software code and SV reports means that organiza-
tions are often not willing to share private-source code or
data to researchers [54]. This data privacy creates many
data accessibility issues. Firstly, several researchers have
observed that commercial systems have not provided their
source code [P9, P10, P26, P32, P45, P48, P61], making SVP
via source code on these systems infeasible. Furthermore,
organisations and practitioners might desire to limit the
availability of their security advisories by making them
private or vague [P1, P13, P56]. By concealing information
about vulnerabilities, it is theoretically harder for an attacker
to exploit a system. Similarly, an organisation might not
even maintain a security advisory or document SVs [P16,
P27, P37, P38].

To represent real-world data, researchers have often
surreptitiously avoided this issue through the use of open-
source repositories that have public vulnerability records.
Without open sources, data retrieval and reporting can be-
come very difficult due to commercial sensitivity. Whilst this
is valid, open-source data is not representative of software
engineering practices as a whole; it is unknown whether the
derived observations will generalize to private-source code
and practices. Only two out of the 61 primary studies used
private source data [P5, P11], both of which suffered from
data entry availability (Ch5) as a result.

5.3 Effort

Effort describes the amount of human-effort required to
label a dataset [39]. The standard approach for traditional
supervised learning has been to have a subject matter expert
hand-label a dataset. However, this is largely infeasible for
SV data due to the extreme effort requirements. As such,
many researchers have skirted around this challenge by
using synthetic labeled data sources or reusing existing
datasets. Consequently, this theme was actually the least
mentioned by primary studies, as researchers that reused
datasets often did not report or discuss the effort.

Ch7: Labor Intensive. Labeling code or bug reports as SV-
related is a non-trivial task, which makes it highly labor in-
tensive when coupled with the sheer number of modules to
examine [P2, P18, P29, P43, P61]. Dowd et al. [55] estimated
that one hour of security review can cover an average of
500 lines of code. However, most modern software systems
contain millions of lines of code, which makes the required
man-hours infeasible. Zhou et al. [P2] stated that it took
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600 man-hours to manually curate their SV dataset. Manual
labeling is ultimately the most reliable labeling approach
however, due to the large amount of noise for automated
labeling (Ch13).

Ch8: Expertise Requirements. Secure code review requires sig-
nificant security expertise [P2, P18, P31, P43]. To successfully
perform secure code review, a practitioner/researcher must
have the capability to memorize and recognize thousands of
security-related patterns and concepts [56], and this list of
required knowledge is continually growing. Furthermore, it
has been highly difficult to identify SVs in comparison to
regular defects [P20 , P30, P33, P34, P42, P43], as they do not
necessarily represent functional bugs and are thus hard to
verify.

5.4 Data Scarcity

Data scarcity refers to the extent to which the quantity or
volume of the available data is appropriate for the task at
hand [38], [57]. As SVP is a data-driven process, it requires
large volumes of data [50]. For SV data, this challenge
largely represents the low number of real-world vulnerable
examples available. Whilst codebases are often sufficiently
large, the number of identifiable vulnerable modules in a
codebase is relatively small [8].

Ch9: Data Imbalance. The severe imbalance of vulnerable
modules to non-vulnerable modules has been a challenge
reported by many researchers using real-world datasets. To
quantify this issue, we report the percentages of vulnerable
modules in each dataset utilized in the primary studies,
displayed in Figure 11. We display the real-world and
synthetic datasets separately, as the synthetic datasets have
been artificially constructed to over-represent the vulnerable
class. Real-world datasets which were artificially altered to
be balanced, or merged datasets consisting of both synthetic
and real-world examples are excluded from Figure 11.

Fig. 11. The percentages of vulnerable files in datatasets utilized in the
primary studies.

This has been a considerable issue for SVP research, as
learning-based models are optimized to perform on bal-
anced classes [58]. The severe class imbalance issue present
in real-world SV data can lead to biased classifiers that favor
the non-vulnerable class [P15, P19, P24, P30, P31, P33, P50,
P54]. This challenge has been referred to as finding a needle
in a haystack [8] and is notably unique to security defects.
Shin and Williams observed that the number of reported

faults was seven times larger than that of vulnerabilities
[P33]. Nguyen and Tran [P24] observed that class imbalance
increased as the module granularity became more fine-
grained.

Ch10: Number of Samples. Similar to Ch9, the severe imbal-
ance of data leads to a very low overall number of samples
for the vulnerable class. This has been a major blockade
for SVP research as learning-based methods have strict
data requirements; they need a large quantity of historical
cases to learn from. It is common knowledge in the ML
community that more data beats a cleverer algorithm [50].
Several studies have particularly exacerbated this issue for
DL-based methods, which require even greater data size
[P15, P23, P29, P34, P45, P47, P50]. This is an emerging
challenge given the rise of DL-based methods for SVP [13].

5.5 Label Noise

Label noise relates to whether the labels in a dataset accu-
rately represent the ground truth and are free of error [38],
[54], [57]. As SV datasets have been rarely hand-labeled by
subject matter experts (excluding synthetic datasets), but
instead mined from historical artefacts, a large amount of
noise has been introduced into the SV labels. This severely
impacts the reliability of SV data.

Ch11: Incomplete Reporting. A major problem of using his-
torically reported vulnerabilities to label real world data
is that we have only obtained a label source for the vul-
nerable class, and simply treated the remaining labels as
non-vulnerable, creating uncertainty in the labels for the
non-vulnerable class. Modules in the non-vulnerable class
are not actually confirmed to be clean, just that no vulnera-
bilities have been historically reported. However, in reality,
there can be dormant or latent vulnerabilities existing in
these modules [P1, P11, P12, P13, P16, P19, p21, P28, P30,
P36, P37, P56, P59, P60, P61]. Hence, the non-vulnerable
class is better considered as unlabeled [P21, P47].

Similarly, researchers are limited to the use of fixed vul-
nerabilities as a label source [P52]. Unresolved vulnerabili-
ties have been rarely disclosed as they can be exploited by
attackers. Hence, during data labeling, these unresolved SVs
would actually be contained in the non-vulnerable class.

Furthermore, the reliance on vulnerabilities to be re-
ported has created a temporal issue for data collection. SVs
usually take time to be detected and fixed, and hence a
different number of SVs will be documented depending
on the time of data collection [P21, P36]. Jimenez et al.
[P36] observed that the performance of models significantly
decreased when only using vulnerabilities observed before
the time of model training.

Using bug reports for labeling also has created a re-
liance on developers or organisations to have thorough
reporting practices. However, in reality, some organisations
have patched some vulnerabilities “silently” [P36, P40, P56],
without any documentation provided for bug reports or se-
curity advisories. Furthermore, the difference between SVs
and non-security related faults can sometimes be minimal
[P5, P12, P30, P33]. Hence, many security defects have
not been reported by developers as such [P4, P52]. An
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organisation may also use multiple bug reporting systems;
a reliance on just one data label source (i.e., NVD) would be
incomplete [P36, P40].

Ch12: Localization Issues. Bug reports and SV records have
not always documented the location of SVs, posing a large
challenge for the retrieval of SV data [P56]. Hence, re-
searchers have often relied on the use of patches to identify
the location of a vulnerability. This is flawed as not every
documented vulnerability has an associated patch [P28,
P30, P33, P42, P56], as it may be concealed for privacy
or not yet resolved. Furthermore, patches may not always
properly disclose the true location of an SV [P1], as patches
may instead provide workarounds for separate modules,
rather than a fix of the underlying problem. Jimenez et
al. [P12] found that only 75% of vulnerability reports had
an associated fix. Vulnerability reports are often incomplete
and missing references [9].

Furthermore, tracking SV location from a bug fix has
been non-trivial. Version information in bug reports is often
unreliable [P1, P24, P30, P56], and commits can be noisy
[P1, P16, P29, P42]. Identifying relevant software versions
for a vulnerability is highly difficult. Due to the evolving
nature of code, the assumption that all previous versions
of code were also vulnerable is invalid [P24], and reporting
vulnerabilities in prior versions is inaccurate as developers
have little benefit from doing so [P1]. A vulnerability fix
can also be buried as part of a larger commit including
non-security changes. Herzig et al. [59] showed that tangled
commits had significant impacts on defect labeling, with an
average of 16% of files being mislabeled as a result.

Ch13: Erroneous labeling. Label inaccuracies can addition-
ally come from various other sources. Firstly, with noisy
labels stemming from Ch11, as well as errors arising from
localizing labels to code modules (Ch12), manual labeling
has been a common approach to help ensure data quality.
However, this approach is erroneous in itself. As discussed
in Ch8, manual labeling is difficult and requires high ex-
pertise. Hence, it is inevitably an error-prone task [P18, P40,
P43, P52]. Furthermore, the process of labeling modules as
vulnerable or not can even be quite subjective [P11, P56].
There is no clear definition of the difference between a
vulnerability and a fault, and hence this distinction can
be nebulous to a human [P30]. For instance, if a regular
function calls a vulnerable function, it is unclear whether
this function should also be considered vulnerable [P1].

Some studies have utilized static analysis methods to
achieve automatic data labeling without the need for his-
torical vulnerability reports [P12, P37, P46]. However, re-
searchers have observed these methods to be highly inac-
curate and hence introducing considerable noise into data
labels [P2, P46]. This process can also be flawed from a
motivational perspective, as the SVP model is simply re-
learning the patterns used by the static analysis tool to infer
the labels.

Patched vulnerabilities may not actually be exploitable
in the real-world either [P1, P52]. Developers may incor-
rectly hypothesize security weaknesses, or err on the side of
caution. This adds unreliability to the accuracy of the labels
in the data source, as the SV labels may actually be benign.

Another large and open challenge has been the lack of
measures to quantify label quality [P24, P28, P32]. There is
no trivial way to measure or quantify the aforementioned
label noise issues. Furthermore, with the reliance on his-
torical artefacts for labeling, some sources of label noise
are undetectable or unverifiable, e.g., SVs remain dormant
(Ch11) until they have been detected. This severely impacts
the reliability of SVP research, as it is unclear whether the
findings have been made using valid data.

5.6 Data Noise
Finally, data noise refers to the noise within the raw data
entries [39]; code modules for the purposes of SVP. Noise
and inaccuracies in these modules may negatively affect
the data and any produced features used to train a model,
lowering the potential efficacy of that model.

Ch14: Code Noise. SVP uses code as the raw data source.
However, source code is noisy, which consequently impacts
the effectiveness of any produced model. Developers have
different coding styles and naming conventions [P28, P34,
P38]. Li et al. [P61] further identified, that different projects
may have different code quality due to differences in coding
practices and guidelines. Real-world code can also contain
syntax issues [P9, P50]. These sources of noise can severely
impact the versatility of produced SVP models, as they may
instead learn specificities of particular coding styles and
syntax.

Furthermore, binary code is usually much noisier than
regular source code. Code snippets can be difficult to trace
and identify [P27, P53], or interspersed code and variables
can become indistinguishable [P27, P48].

Ch15: Redundancy. Redundancy refers to undesirable dupli-
cation in a dataset. Too much redundancy in the training
data, can lead to bias and overfitting for an SVP model.
The major source of redundancy in SV datasets has come
from code modules having several different versions and
revisions. Datasets that consider versions separately can
introduce redundancy into the code entries, as the majority
of the code usually stays constant between revisions [P20].
Vulnerable labels can also be duplicated over several ver-
sions, as modules can remain vulnerable for an extended
period of time [P12, P19, P24, P30, P46]. Code branches
are another potential source of redundancy to labels and
modules as the majority of code and data is often dupli-
cated across branches [P1, P42]. Automatic extraction of
code snippets and program slices can additionally introduce
duplication [P8], as duplicate program slices can be created
from different entry points.

Vulnerable samples can also not be very distinct from
each other [P14, P40], which limits the learning capacity of
an SVP model. This is particularly present for synthetically
created samples [P28]. Another issue is that vulnerable
and non-vulnerable entries have limited diversity across
classes [P49]. Vulnerability patches can only alter a few
lines of code, making the majority of the module consistent
between its vulnerable and non-vulnerable versions. This
is a particularly significant issue as if the model cannot
learn these subtle distinctions, it will produce high false
positive/negative rates.
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Ch16: Heterogeneity. Code modules have been observed
to be highly heterogeneous, which negatively impacts the
diverse application of the produced SVP modules. For ex-
ample, the coding conventions of one code module often
do not match another, due to differences in authorship,
functionality or coding style. Learning-based methods op-
erate best when the data, especially the training and test
distributions, are homogeneous so that the learnt patterns
can be applied uniformly [50]. However, researchers have
observed data distributions to be irregular or containing
outliers, hence requiring normalization to reduce irregulari-
ties [P25, P42]. Similarly, several researchers have observed
that SVP models perform poorly in a cross-project setting
[P1, P12, P26, P39, P56], due to the heterogeneity of these
datasets; the coding conventions and functionality of one
project rarely mirror another.

6 DATA CHALLENGE SOLUTIONS (RQ3)
In this section, we present the various solutions that re-
searchers have presented in the reviewed studies to solve
data challenges or help improve data quality. Figure 12 dis-
plays the main areas of the solutions that we have identified.
We again used thematic analysis, described in Section 3.4.2,
to identify the categories of the identified solutions. We
mapped the solutions to the data challenges based on the
data challenge themes that the solutions were connected to
when reported in the primary studies.

Fig. 12. A mapping of solutions onto challenges.

We provide an overview of the main solutions that have
been considered for the identified data preparation chal-
lenges. As discussed in Ch1, the majority of the data chal-

lenges arise from the use of the real-world data; challenges
for Accessibility, Effort, Data Scarcity and Label Noise are
largely unique to the real-world datasets. Consequently, the
majority of the data solutions are similarly aligned with the
real-world data challenges. We note that not every primary
study provided remediation for the reported data issues.

We also note that several of the data solutions were pro-
vided to these challenges at a model-level, rather than from
the data perspective. For instance, several studies supported
the use of ensemble models as they are more robust and
hence less susceptible to noise and class imbalance [P42].
Furthermore, feature processing techniques, such as feature
selection, were another method used to help remove data
noise and increase generalizability [P22, P25, P40, P42, P47,
P55]. However, we focus on the data preparation steps, so
an analysis of these model-level solutions is out of the scope
of this SLR.

S1: Cross-Project Application. As discussed in Ch4, re-
searchers have been motivated to overcome the cold-start
problem and cost of acquiring a dataset. This has led to
several efforts to apply cross-project SVP models for which
a previous project’s dataset is used to train an SVP model
that can be applied to a new project. Due to the extreme cost
of acquiring data (Ch7&8), the cold-start problem is thought
to be further exacerbated for SVP. Hence many researchers
considered cross-project SVP as an essential solution to this
issue [P1, P10, P18, P21, P22, P26, P31, P37, P41, P43, P56].

Whilst this solution does solve the challenges that it
seeks to address, it also adds challenges by introducing het-
erogeneity to the data (Ch16), which consequently impacts
a model’s performance. Furthermore, underlying problems
in the original data source can still be present.

S2: Data Reuse. With the significant challenges in the data
labeling effort (Ch7&8), coupled with the challenges in data
accessibility (Ch5&6), it is a more efficient choice to reuse
or augment the existing datasets. This not only significantly
saves time and effort in data preparation, but also enables
researchers to conveniently evaluate and benchmark per-
formance on the same datasets. As dataset reuse greatly
reduces effort, it is more desirable than self-construction of
a dataset. Hence, researchers have often reused the existing
datasets when available; 28 out of the 61 reviewed studies
reused or augmented the existing datasets in some manner.

Like S1, whilst this solution certainly solves the chal-
lenges regarding Accessibility and Effort, it does not address
the problems in the original dataset like Generalizability,
Data Scarcity, Label Noise and Data Noise. However, many
researchers have seemingly assumed the validity of the
prior datasets, as the studies that utilized former datasets
often did not discuss other data challenges.

Data reuse is achieved through data sharing efforts of
other researchers. Several researchers made their datasets
publicly available for use to assist in construction of SVP
models by researchers and practitioners [P1, P8, P10, P14,
P16, P26, P31, P32, P36, P38, P44, P52, P56, P61].

However, the actual usability of these datasets can create
further issues for this solution. Firstly, the quality and reli-
ability of the information provided in the existing datasets
is unknown and unverifiable [P4, P8, P12, P20, P28, P38,
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P39, P40, P44, P54]. Researchers often prefer to use a dataset
about which they have complete knowledge. Researchers
also build their SVP models to fit a variety of application
contexts, such as specific granularities, programming lan-
guages, or SV types. Hence, several researchers found the
information provided in the existing datasets insufficient to
be applicable to their desired applications’ contexts [P2, P4,
P12, P16, P23, P27, P31, P39, P42, P43, P48, P56].

Furthermore, although many SV datasets have been
created, they are not necessarily available. Researchers have
reported that the existing datasets are private [P2, P16, P31]
or unavailable [P2, P12, P42]. We observed that five of
the shared datasets from the reviewed studies have since
become unavailable due to dead links. Such problems of
availability or usability of the desired datasets can lead
researchers to use self-constructed datasets.

S3: Class Rebalancing. The severe imbalance of vulnerable
to non-vulnerable modules (Ch9) is reported by almost
half of the reviewed studies (27 out of 61) as a significant
data challenge. This imbalance leads to models that bias
towards the majority class [50], and do not fairly consider
the minority vulnerable class. As such, many studies have
employed some form of class rebalancing to help remediate
this issue. These rebalancing techniques fall into two main
categories: Undersampling [P1, P8, P14, P15, P19, P20, P22,
P30, P33, P52, P53 P55, P56, P60] and Oversampling [P8,
P14, P17, P20, P36, P45, P56]. Undersampling is the process
of removing samples from the majority class to match the
size of the minority class, whereas oversampling duplicates
or synthetically adds samples to the minority class until
the size matches the majority class. Undersampling was the
more popular technique used in the reviewed studies; 14
studies used undersampling in comparison to 7 that used
oversampling. Researchers considered the undersampling
technique to be more standard [P22, P55], effective [P30,
P60] or efficient [P19, P30, P60], in comparison to over-
sampling. However, we note that undersampling may not
always be desirable as it reduces the overall amount of
data, which can have significant impacts for SV data due
to the low number of samples in the minority class (Ch10).
Oversampling does not suffer from information loss, but
adds redundancy to training data (Ch15), which can lead to
overfitting.

This solution is largely considered a necessity, as the pos-
itive impacts of class rebalancing have been widely agreed
upon by the community. Furthermore, several studies have
explicitly demonstrated the performance increase of models
when trained on balanced data in comparison to imbalanced
data [P7, P54, P60].

Alternatively, some researchers artificially constructed
both their training and test datasets to be balanced [P61].
Balancing the test set like this artificially inflates the model
performance, however, as the incoming real-world data will
not be balanced [P1, P15]. This is a significant weakness of
synthetic datasets that is expected to impact their real-world
generalization, as they are constructed to over-represent the
vulnerable class.

S4: Manual Analysis. The poor labeling provided from bug
reports can add a lot of label noise and inaccuracies in the

data. To combat this, researchers have often assisted the
labeling process through manual analysis. Over 37% of the
reviewed studies (23 out of 61) assisted their data collection
process with manual inspection. This allowed researchers to
manually spot sources of label noise [P1, P2, P4, P7, P8, P10,
P11, P14, P25, P26, P28, P29, P30, P31, P32, P42, P44, P35,
P46], or made localization to code modules more accurate
[P1, P2, P4, P7, P10, P14, P26, P31, P44, P45, P52]. It also
helped researchers to obtain an understanding of the quality
of their dataset [P13, P16, P32, P42].

Whilst manual labeling assistance can greatly improve
the quality of a dataset, manual analysis is problematic in
itself. It is highly effort intensive (Ch7), difficult (Ch8) and
error-prone (Ch13).

S5: Additional labeling. Manual analysis can only resolve
issues in the vulnerable class, as the use of bug reports
only provides a source of labels for this class. In reality,
however, dormant or latent vulnerabilities can introduce un-
verifiable inconsistencies in the non-vulnerable class (Ch11).
Hence, several researchers have used automated methods
to obtain additional labels. One such approach was to
use static analysis tools to label modules, in an attempt
to uncover latent vulnerabilities [P37, P46]. However, this
process added considerable noise to the labels in itself [P2,
P46]. Li et al. [P61] used a rule-based approach to obtain the
non-vulnerable modules, by filtering out functions which
may have security relevance. This decreased the chance of
having latent vulnerabilities in the non-vulnerable set. As
these additional labeling methods often introduce their own
assumptions or inaccuracies, their effectiveness is unclear.

S6: Data Cleaning. The data noise problems can be addressed
through data cleaning of the code modules. Table 5 from
Section 4 lists the common data cleaning techniques for SV
modules. Although the real world code is usually much
noisier than the synthetic code due to inconsistent coding
styles [P28, P34, P38], cleaning can still be necessary for
the synthetic data sources depending on the method used
to construct the vulnerable examples. Fang et al. [P50]
found a large proportion of coding errors in the synthetic
SARD and SQLI-Labs synthetic datasets that they manually
remediated.

Data cleaning is one of the four data preparation steps
[18], and consequently this solution has been largely consid-
ered a necessity. For example, Zheng et al. [P28] showed that
replacing user defined strings with generic tokens improves
a model’s performance.

7 RECOMMENDATIONS

We first present an overview of the findings to our three
RQs in Figure 13, to help readers to better interpret our
analysis. Figure 13 displays the considerations, challenges
and current solutions for the data preparation steps of
SVP. This overview can help researchers or practitioners to
construct SVP datasets, and be aware of the challenges and
potential data quality issues.

The validity of SVP research largely relies on the quality
of the data used to construct an SVP model. However, as
identified in Section 5, researchers have faced a plethora of
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Fig. 13. An overview of the SVP considerations, challenges and solutions for data preparation.

data preparation challenges that may lead to serious pitfalls
to be avoided while training SVP models. Several previous
studies have called for a need of a gold-standard dataset [4],
[13], [16]; one that overcomes the identified data preparation
challenges.

We have identified several areas of the data preparation
solutions in Section 6 that researchers have utilized to help
address the data preparation challenges. Whilst we recom-
mend that researchers and practitioners also adopt these
solutions as they provide an initial foundation for data qual-
ity, these solutions are, by no means, complete to produce
a gold-standard dataset. Particularly, many challenges for
Generalizability remain unaddressed, and the solutions for
Label Noise are insufficient. Manual analysis (S5) is often
infeasible or inaccurate, and additional labeling (S6) can add
additional noise or inconsistencies into a dataset.

Furthermore, SVP research has operated at a variety of
different contexts, which makes the use of a standardized
dataset difficult. Different researchers may favor differ-
ent levels of granularity or applications domains. Hence,
rather than proposing the guidelines for developing a gold-
standard dataset, we instead propose a few recommen-
dations for the future research directions that will help
advance the SV data preparation processes and address
the identified data challenges. These recommendations have
been based on our review of the primary studies and ob-
servations from the supporting literature. We note that we
only provide recommendations at the data-level, not for the
model construction or evaluation processes that may also be
needed for addressing the data challenges, as this is out of
the scope of our study.

7.1 Improvement of the existing practices

The general SVP preparation practices are fairly consistently
used in the reviewed studies. However, there is significant
room for the improvement of these practices due to the
many data challenges that stem from them.

R1. Better labeling of real-world data. We observed in
Section 6 that the majority of data challenges arose from
the labeling of SV data from the real-world data sources

(Accessibility, Effort, Data Scarcity, Label Noise). Although
the relative scarcity of SVs in the real-world data is difficult
to resolve without synthetic means, much improvement can
be done in regards to label noise. The major challenges for
the real-world data labeling have come from the use of
bug reports as a data label source. Bug report improvement
through automated means is an active field of research,
solving problems such as fault localization [60], and bug
classification [61]. The application of these techniques for
data preparation may potentially help resolve challenges
in the incomplete reporting (Ch11) and localization issues
(Ch12). Better automated methods for this data extraction
will also greatly reduce the effort requirements (Ch7).

R2. More realistic synthetic datasets. The majority of
data challenges come from the use of the real-world data,
which is predominantly the preferred dataset type due
to the lack of the real-world generalization of synthetic
datasets (Ch1). If the process in which the synthetic data
sources are developed is improved to produce more realistic
SV examples that are more representative of real-world sce-
narios, then these datasets will greatly increase in value. Bug
seeding is a relevant research field that intends to produce
additional bug examples for the data hungry evaluation of
the defect discovery methods [62]. These additional bugs are
generally created through use of the existing examples. This
research has recently begun to investigate the creation of
more realistic bugs [63], [64]; the application and advance-
ment of this research to SV data are a potentially promising
direction.

7.2 Further investigation into the challenges and solu-
tions
To overcome or provide better solutions to the data chal-
lenges, there is a need for further investigation. General-
izability appears to be an unaddressed challenge, so we
outline three recommendation areas to help improve rep-
resentation (R3-5). Many of the current solutions are also
incomplete, and hence, need better advancement.

R3. Use of more diverse language datasets. We ob-
serve in Figure 6 that researchers have primarily con-
structed datasets for C/C++, PHP and Java. Whilst these
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are popular languages, the datasets (and hence SVP mod-
els) are very limited for other languages. This makes the
application of SVP difficult to projects for these other lan-
guages, due to lack of existing data and exploration. Fur-
thermore, the cross-language datasets are currently under-
investigated, but this will require corresponding cross-
language or language-agnostic techniques [P53].

R4. Use of datasets applicable to SMEs. The current
research evaluated using real-world data has been using
large reputable mature systems, as it is considered more
generalizable [P23, P36, P40, P55]. However, this may be
considered a limitation of the current methods when applied
to Small to Medium Enterprises (SMEs). This is an important
gap in the literature as it is expected that SVP would be
more challenging in this context due to a lower number of
SV examples (Ch10), poorer coding standards (Ch14), and
less complete reporting practices (Ch11).

R5. Investigation of vulnerabilities from different de-
velopment lifecycle stages. A large flaw in the use of
security advisories to locate the real-world vulnerabilities
is that it provides a narrow view of the different develop-
ment stages; they only detail vulnerabilities identified in
deployed systems. Bug reports can detail both pre-release
(identified during testing) and post-release (identified in a
deployed system) vulnerabilities [P5, P11]. These two SV
types are drastically different in nature due to the differ-
ences in how they are detected and the impacts that they
have. However, not much differentiation has been made
between them. Furthermore, more simplistic vulnerabilities
that can be detected earlier in the software development life-
cycle, during implementation or code review, are obscured
from analysis. If SVP models are intended as a form of
early SV detection [21], then the use of these SVs is perhaps
fundamentally flawed. The differences and impacts on the
SVP process by these disparate SV types will possibly be an
interesting future research direction.

R6. More consideration of the negative class. Fully
supervised learning for SVP requires a positive class (vul-
nerable modules) and a negative class (non-vulnerable mod-
ules). The quality of both of these classes is highly important
to ensure that a model is able to learn the appropriate pat-
terns in the data. Whilst much efforts and manual inspection
have been expended to ensure the quality of the vulnerable
labels [P1, P2, P4, P7, P8, P10, P11, P14, P25, P26, P28,
P29, P30, P31, P32, P42, P44, P35, P46], equal efforts have
not been expended for the non-vulnerable labels. There are
several different methods researchers can use to obtain the
negative class: 1) they can treat the unlabeled files as the
negative class, but this assumption may not be valid and
careful consideration needs to be taken for versioning; 2)
they can take the patches used to fix SVs as the negative
class, but this creates a balanced dataset with little sep-
aration between the classes, as each SV usually has only
one patch, and patches are usually small in comparison to
overall code module; or 3) they can use a heuristic to help
define the non-vulnerable class and avoid label noise, but
this may artificially increase the separation between classes.
However, despite these considerations, the negative class
is usually an afterthought. Due to incomplete reporting
(Ch11), we observed that there can be considerable inaccu-
racies in the non-vulnerable class. This is perhaps because

researchershave only been able to obtain a data source for
the vulnerable labels (i.e., the bug reports), but there is no
source of labels for non-vulnerable data. Hence, we may
even see a relaxation of the labeling and the fully-supervised
learning requirements in the future. PU learning can be
applied, in which the non-vulnerable class is instead treated
as unlabeled [65].

R7. Data quality assessment criteria. We observed in
Ch13 that the quality of most SVP datasets is unknown.
However, it is vital that researchers and practitioners are
able to determine the quality of their datasets, so that they
can make informed decisions about the validity and relia-
bility of the constructed SVP models. Hence, data quality
assessment criteria ought to be developed to assess SV
datasets. Whilst data quality assessment has ben a long-
standing practice [38], [39], these existing criteria are not
relevant or applicable to the SVP domain. Our categorisa-
tion of SV data challenges in Table 6 will potentially help
towards producing relevant data quality assessment criteria.

7.3 Consideration of other data dimensions

Finally, we observed several additional data quality dimen-
sions that have been under-explored for this domain. Hence,
we recommend that those should be better considered and
investigated.

R8. Investigation into data integration. Data integration
is the practice of merging disparate data sources into a single
dataset [66]. In practice, researchers have regularly merged
datasets in the reviewed primary studies to increase the
amount of data. This typically involves mixing data from
different projects, or between the real-world and synthetic
entries. Another source of integration was even the mixing
of different SV types; some researchers did not restrict SV
types examined, whereas others did. However, little investi-
gation has been done on the impact of this data mixing, and
hence more research is needed on the integration techniques
and the applicable data sources. For instance, Saccente et al.
[P34] found that an SVP model trained on all SV types con-
currently produced unreliable predictions, so they treated
the dataset of each SV type separately. Researchers can even
consider integrating SV related data from other common
Open Source Intelligence (OSINT) sources, such as Stack
Overflow [67], to provide more information to SVP models.

R9. Consideration of data security and malicious data.
Adversarial attacks are becoming an increasingly common
consideration for learning-based systems [68]. At a high-
level, adversarial attacks involve the use of malicious train-
ing data or inputs with the purpose of intentionally ’fool-
ing’ a model. SVP is a learning-based process, making it
susceptible to adversarial attacks; for example, adversarial
inputs can be crafted to fool a model into classifying a
vulnerable module as a non-vulnerable one. Despite this,
no consideration of these weaknesses has been made to
date, perhaps because the training data of an SVP model
is usually expected to come from within a project, where
the data is assumed to be secure and non-malicious. This
assumption is not always valid; there is a possibility of
insider threat or users who may even accidentally provide
malicious data by unintentionally creating vulnerable code
modules that may go undetected [69]. Similarly, the bug
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reports used to infer the labels of the data can often be filed
by users, who may be trying to maliciously mislabel certain
code modules. Furthermore, with the frequent use of cross-
project, synthetic or reused datasets, data governance may
not always be available. Hence, researchers ought to have
more consideration and countermeasures for data security.
Whilst several solutions for this issue have existed at the
model-level, such as input perturbation [68], practitioners
ought to ensure that their datasets come from trustworthy
sources.

R10. Consideration of timeliness. Timeliness describes
the temporal aspects of data [39]. There are two main
components for timeliness. The first is the currency of data;
the age of data in use compared to when it was collected.
Practitioners ought to generally avoid using out-of-date
data as it can lose relevancy to contemporary settings. This
is particularly an issue for SV data, as vulnerabilities take
time to be discovered (Ch11), so more complete information
is usually obtainable the later data collection is performed.
For instance, 10 vulnerabilities may have been reported
for a codebase after three months, but an additional 10
vulnerabilities may have been reported one year later. It is
unclear whether this is a significant issue in the primary
studies. SV data have been generally collected at the time
of analysis when self-constructing datasets. For data reuse,
where this problem usually manifests, datasets are not very
old as the SVP research domain is still relatively new. The
oldest shared real-world dataset is the dataset from Walden
et al. [P1] that was collected in 2013. However, it is still
beneficial if efforts are made in future to maintain and
update the existing datasets for reuse.

The second aspect of timeliness relates to the temporal
nature of the data accumulation; historical artefacts have
been accumulated incrementally over the lifecycle of a
project. This poses an issue for SV data due to concept
drift [70]; the vulnerability data and patterns change over
time with the emergence of new concepts [71]. Failure to
account for this temporal nature, that is, preserving data
order for model training and validation, has been shown to
produce unreliable models and impact the real-world gen-
eralizability [72], [73]. However, only 13% of the reviewed
studies (8 out of 61) considered a time-based ordering of the
data. Hence, more consideration of this issue is needed in
this domain, to produce more reliable SVP models.

R11. Consideration of understandability. Understand-
ability describes the ability to comprehend data [38]. Ex-
ploratory data analysis is an integral part of data science,
as it helps practitioners to understand data quality issues,
imbalances, and relationships within the data. This is par-
ticularly important for ML as it allows practitioners to
identify the necessary data cleaning practices and to conduct
feature engineering [74]. SV data can be complex due to the
intricacies of the code and security weaknesses. Despite this,
not much effort has been reported by researchers into data
understanding and visualization.

Data visualization is one of the most powerful tech-
niques for data understandability [74], but only a few of
the reviewed studies did visual exploration of their data.
Neuhaus et al. [P13] visualized the locations of SVs in
a codebase and observed that the distribution of SVs are
scarce and irregular. This motivated their search for specific

code patterns that can be used to describe the irregular
distribution. Chowdhury and Zulkerine [P19] used data
visualization to identify that files are unlikely to contain SVs
in multiple different versions, and hence, determined that
vulnerability history of a module may be a poor indicator.
The future efforts in data understandability for SV datasets,
using similar techniques to the ones aforementioned, may
be able to yield novel impactful insights for this data, and
assist in SVP model creation. Better data understandability
can also help practitioners who lack data science expertise
with setting up SVP models.

R12. Increased data trustworthiness. Although data
reuse has been popular for SVP (S2), we observed that
there are many issues regarding the availability of these
datasets. Furthermore, the incomplete reporting practices of
SV data has led to a lack of trustworthiness; the integrity of
the datasets is not verifiable. The reporting of the datasets
has often been insufficient to allow for proper replication,
making the datasets hard to validate. For instance, many of
the reviewed studies did not report the version of the data
source or specific extraction steps. Furthermore, most data
preparation processes used extensive manual inspection or
labeling (S5), which is hard to replicate due to its subjectiv-
ity. Although some studies attempted to remediate this by
making their datasets available, not many of them made the
code and methods used to create these datasets available,
which has made reproduction and adaptation efforts very
difficult. Riom et al. [75] found the replication of a seminal
work [P16] infeasible due to these challenges.

The underlying problem of the poor data trustworthi-
ness is a lack of proper data reporting and storage efforts.
Researchers ought to make more efforts in the future to
specify the exact details and processes of data preparation,
to allow for easy reuse, understanding and augmentation of
the datasets. One such example process is called Datasheets
for Datasets, proposed by Gebru et al. [76]. Such documen-
tation will also help practitioners to better understand the
capabilities and implications of the produced SVP models,
since the models are highly reliant on the dataset used to
produce them.

Another potential solution is open data sharing plat-
forms or repositories for enhancing data availability. Such
platforms can also provide vital information regarding data
provenance and quality. These efforts will potentially also
encourage data maintenance, which is another issue that we
have discussed in R10. Considerable efforts towards such
a platform have already been made in the Software Engi-
neering domain through the PROMISE repository [77] and
the SEACRAFT repository [78]. However, these efforts still
currently fail to ensure data provenance and maintenance.

8 THREATS TO VALIDITY

This review has been designed and executed by carefully
following the guidelines for SLR provided by Kitchenham
et al. [27]. Hence, we have identified the potential validity
threats to this SLR and taken appropriate steps to minimize
the expected impact of the identified threats as per the SLR
guidelines. We discuss the validity threats considered for
this SLR below.
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A standard threat to any SLR is selection bias; some
relevant papers may be missed during the selection process
of the SLR. Whilst there is a possibility that our search
and study selection process may have missed some relevant
papers, we systematically drove the paper selection process
by following the SLR guidelines and the recommended
practices to minimize such possibility of missing the rele-
vant papers. For example, we chose a meta search engine,
SCOPUS, that indexes all the well-known computer science
and software engineering digital libraries such as IEEE,
ACM, Elsevier, and Springer. Furthermore, we iteratively
refined our search string using the quasi-gold sensitivity ap-
proach defined by Zhang et al. [28] until we were confident
that our search string had retrieved the majority of the key
papers in this research area. Finally, we used backward and
forward snowballing to help capture any studies that might
have been missed during our automatic search. To avoid the
study selection bias by the authors, we initially conducted
a collaborative pilot study selection on 100 papers to en-
sure consistency. Furthermore, any paper that an individual
author was not confident about including/excluding was
discussed between the first two authors before making a
final decision.

Additional validity threats can be introduced through
the quality assessment, data extraction and thematic analy-
sis processes of this SLR. Inaccuracies in these processes can
be introduced by human-error and researcher-bias. The first
two authors jointly carried out the pilot activities for these
processes to help ensure author consistency. Furthermore,
all the data-extraction activities were cross-checked by the
authors, with disagreements resolved through discussions.

Finally, our results may be affected by publication bias;
research is biased towards the publication of positive results
over negative results [27]. Hence, it is expected that re-
searchers would also be reluctant to report the major (data)
limitations if it is not the focus of a study. As our findings
were grounded in the data extracted from the primary
studies, we were only able to report the considerations and
challenges explicitly discussed in the papers. Hence, our
findings may not be exhaustive. However, we assume that
our findings were able to capture the major data challenges
and considerations, due to the quality and integrity of our
selected primary studies which we ensured through our
inclusion/exclusion and data quality assessment criteria
from Section 3.2.

9 CONCLUSION

This paper reports our research effort aimed at system-
atically reviewing the literature on the data preparation
processes for SVP. Data challenges serve as the major barrier
for research and industrial adoption, hence, our study aims
to shed light on these important issues to help advance
this emerging research field. We have conducted rigorous
analysis and systematic synthesis of 61 papers reporting
research on SVP.

The main aim of this research was to identify the con-
siderations, challenges and solutions of data preparation
for SVP, by answering three research questions. Firstly, we
have identified the major decisions made by researchers for
the data preparation processes, to help inform the state of

the practice. Secondly, through our thematic analysis, we
have derived a taxonomy of 16 identified data challenges
that researchers face for constructing data-driven methods
for SVP. These challenges involve the data Generalizability,
Accessibility, label collection Effort and Scarcity, and both
Label and Data Noise. Thirdly, we similarly categorized
and mapped the data solutions that researchers utilize.
However, these solutions do not address all sorts of data
preparation challenges identified by this SLR.

We have found that challenges are particularly pertinent
for the data labelling process that has consequently attracted
the majority of the identified solutions. Due to these signif-
icant challenges, data reuse is a common solution to reduce
data construction effort and difficulties. Alternatively, the
use of synthetic datasets is an attractive option as these
datasets artificially solve challenges for Accessibility, Effort,
Data Scarcity and Label Noise, but these datasets experience
significant challenges with Generalizability, which severely
limits their value.

The findings of our SLR aim to help researchers and
practitioners to understand the key SV data preparation
considerations and challenges; such evidence-based under-
standing can aid future SVP research and practice. By con-
solidating the state of the practice into an integrated source
of information, our study purports to assist practitioners in
improving their data preparation practices for building and
deploying SVP models. Furthermore, the taxonomy of the
data preparation challenges developed based on this SLR
can be used to identify and classify the data challenges
that practitioners may encounter; and our categorization
of the identified solutions is expected to help identify the
best practices of data preparation for SVP models. Such
improvements are expected in turn to improve the quality
of SVP models, as their efficacy hinges on the data quality;
Garbage In, Garbage Out.

The findings also help inform the Software Engineering
research community of the main limitations and barriers of
adoption for SVP, and to help direct the future research
in this area. We have provided guidance for the areas of
investigation through our 12 recommendations. Whilst we
acknowledge that our study does not provide a complete
view of the SVP process on its own, the data is undoubtedly
one of the most important components for any data-driven
process in, and hence, we take the first step to highlight
this area of research. By taking steps toward improving
data preparation and data quality, we expect to enable the
creation of more reliable and trustworthy SVP research and
help make automated software security analytics a reality.
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[49] J. Hernández-González, I. Inza, and J. A. Lozano, “Weak supervi-
sion and other non-standard classification problems: a taxonomy,”
Pattern Recognition Letters, vol. 69, pp. 49–55, 2016.

[50] P. Domingos, “A few useful things to know about machine learn-
ing,” Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[51] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of
multiple programming languages and code quality,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1. IEEE, 2016, pp. 563–573.

[52] S.-a. Knight and J. Burn, “Developing a framework for assessing
information quality on the world wide web.” Informing Science,
vol. 8, 2005.

[53] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades, “Facing the
cold start problem in recommender systems,” Expert Systems with
Applications, vol. 41, no. 4, pp. 2065–2073, 2014.

[54] M. F. Bosu and S. G. MacDonell, “A taxonomy of data quality chal-
lenges in empirical software engineering,” in 2013 22nd Australian
Software Engineering Conference. IEEE, 2013, pp. 97–106.

[55] M. Dowd, J. McDonald, and J. Schuh, The art of software security as-
sessment: Identifying and preventing software vulnerabilities. Pearson
Education, 2006.

[56] S. Barnum and G. McGraw, “Knowledge for software security,”
IEEE Security & Privacy, vol. 3, no. 2, pp. 74–78, 2005.

[57] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data qual-
ity means to data consumers,” Journal of management information
systems, vol. 12, no. 4, pp. 5–33, 1996.

[58] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[59] K. Herzig and A. Zeller, “The impact of tangled code changes,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 121–130.

[60] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based
on bug reports,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 14–24.

[61] Y. Jiang, P. Lu, X. Su, and T. Wang, “Ltrwes: A new framework for
security bug report detection,” Information and Software Technology,
vol. 124, p. 106314, 2020.

[62] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE transactions on software engineering,
vol. 37, no. 5, pp. 649–678, 2010.

[63] J. Patra and M. Pradel, “Semantic bug seeding: A learning-based
approach for creating realistic bugs,” synthesis, vol. 15, p. 53, 2021.

[64] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “Learning how to mutate source code from bug-
fixes,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2019, pp. 301–312.

[65] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Puminer: Mining
security posts from developer question and answer websites with
pu learning,” in Proceedings of the 17th International Conference on
Mining Software Repositories, 2020, pp. 350–361.

[66] M. Lenzerini, “Data integration: A theoretical perspective,” in
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, 2002, pp. 233–246.

[67] T. H. Le, R. Croft, D. Hin, and M. A. Babar, “A large-scale study of
security vulnerability support on developer q&a websites,” arXiv
preprint arXiv:2008.04176, 2020.

[68] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Transactions on
Software Engineering, 2020.

[69] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa,
“Insight into insiders and it: A survey of insider threat taxonomies,
analysis, modeling, and countermeasures,” ACM Computing Sur-
veys (CSUR), vol. 52, no. 2, pp. 1–40, 2019.

[70] T. H. M. Le, B. Sabir, and M. A. Babar, “Automated software
vulnerability assessment with concept drift,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 371–382.

[71] M. A. Williams, S. Dey, R. C. Barranco, S. M. Naim, M. S. Hossain,
and M. Akbar, “Analyzing evolving trends of vulnerabilities in
national vulnerability database,” in 2018 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 2018, pp. 3011–3020.

[72] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction,”
IEEE Transactions on Software Engineering, vol. 44, no. 5, pp. 412–
428, 2017.

[73] D. Falessi, J. Huang, L. Narayana, J. F. Thai, and B. Turhan, “On the
need of preserving order of data when validating within-project
defect classifiers,” Empirical Software Engineering, vol. 25, no. 6, pp.
4805–4830, 2020.

[74] T. M. Mitchell, “Machine learning and data mining,” Communica-
tions of the ACM, vol. 42, no. 11, pp. 30–36, 1999.

[75] T. Riom, A. Sawadogo, K. Allix, T. F. Bissyandé, N. Moha, and
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