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A B S T R A C T

A wide variety of Cyber Threat Information (CTI) is used by Security Operation Centres (SOCs) to perform
validation of security incidents and alerts. Security experts manually define different types of rules and scripts
based on CTI to perform validation tasks. These rules and scripts need to be updated continuously due to
evolving threats, changing SOCs’ requirements and dynamic nature of CTI. The manual process of updating
rules and scripts delays the response to attacks. To reduce the burden of human experts and accelerate response,
we propose a novel Artificial Intelligence (AI) based framework, SmartValidator. SmartValidator leverages
Machine Learning (ML) techniques to enable automated validation of alerts. It consists of three layers to
perform the tasks of data collection, model building and alert validation. It projects the validation task as
a classification problem. Instead of building and saving models for all possible requirements, we propose to
automatically construct the validation models based on SOC’s requirements and CTI. We built a Proof of
Concept (PoC) system with eight ML algorithms, two feature engineering techniques and 18 requirements
to investigate the effectiveness and efficiency of SmartValidator. The evaluation results showed that when
prediction models were built automatically for classifying cyber threat data, the F1-score of 75% of the models
were above 0.8, which indicates adequate performance of the PoC for use in a real-world organization. The
results further showed that dynamic construction of prediction models required 99% less models to be built
than pre-building models for all possible requirements. Thus, SmartValidator is much more efficient to use
when SOCs’ requirements and threat behaviour are constantly evolving. The framework can be followed by
various industries to accelerate and automate the validation of alerts and incidents based on their CTI and
SOC’s preferences.
1. Introduction

Identifying and analysing Cyber Threat Information (CTI) is an
important part of validating security alerts and incidents (Islam et al.,
2019; Koyama et al., 2015; Menges et al., 2019; Mittal et al., 2019).
Any piece of information that helps organizations identify, assess, and
monitor cyber threats is known as CTI (Johnson et al., 2016). To help
a Security Operation Centre (SOC) in using CTI, existing approaches,
such as a unifying threat intelligence platform (Islam et al., 2019;
Koyama et al., 2015; Menges et al., 2019; Wagner et al., 2016), aim
to automatically gather and unify CTI relevant to security alerts and
incidents. However, gathering CTI is not enough to perform validation
tasks, as security teams need to analyse and understand CTI for defin-
ing response actions. Security teams write scripts and define rules to
extract necessary information from CTI, and map alerts and incidents to
CTI (Anstee, 2017; Elmellas, 2016; RFID, 2021; Tounsi and Rais, 2018).
Whilst techniques such as defining rules and scripts can be automated,
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they do not help in identifying evolving threats and alerts (Serketzis
et al., 2019; Ward, 2017; Zhou and Wang, 2019), because rules can only
be defined for behaviour of known threats. Thus, human understanding
and resolution are required to identify, define and update CTI, rules and
scripts for emerging threats to adapt changing contexts.

The vast volume of CTI makes it time-consuming for a human to
analyse. Thus, to address the shortcoming of defining rules and scripts
to use CTI, we present a novel framework, SmartValidator. SmartVal-
idator identifies CTI and validates security alerts and incidents by lever-
aging Artificial Intelligence (AI) based automation techniques (Faiella
et al., 2019; Qamar et al., 2017; Serketzis et al., 2019). SmartValidator
follows a systematic and structured approach for reducing the human
cognitive burden to continuously monitor for changes (e.g., change in
attack patterns and CTI) and define the automation strategies whenever
changes occur. We focus on two aspects of automation: (i) automatic
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identification of CTI for different alerts and (ii) automatic validation of
alerts using identified CTI.

By automatic identification of CTI, we mean identifying CTI from
a wide variety of sources. The increasing presence and amount of
CTI over the internet demands effective techniques to automate the
identification of the required CTI for validation tasks (Faiella et al.,
2019; Menges et al., 2019; Noor et al., 2019; Qamar et al., 2017).
The sources of CTI vary with differences in alerts and incidents (EY,
2020; MISP, 2021; RFID, 2021). Examples of CTI include Indicators
of Compromise (IoC) (system artefacts or observables associated with
an attack), Tactics Techniques Procedures (TTP) and threat intelligence
reports (Johnson et al., 2016).

By automatic validation of alerts and incidents, we refer to validating
(i.e., prioritizing, and assessing the relevance or impact of) different
types of alerts and incidents generated and identified by different
detectors. In this context, by detector we mean any tools or systems
used for detection of malicious activities. An organization deploys or
develops different types of detectors that generate alerts upon detection
of malicious activities. Examples of such detectors include Intrusion
Detection Systems (IDS), vulnerability scanners and spam detectors.
Validation of different types of security alerts and incidents requires ex-
tracting information from relevant CTI (Anstee, 2017; Elmellas, 2016;
RFID, 2021; Tounsi and Rais, 2018; Winkler and Gomes, 2017). For
example, a network administrator or threat hunter writes scripts to
search for CTI (e.g., information about the suspicious incident) and
defines rules to validate an alert. There are always cases for which au-
tomatic validation would not be suitable. For example, in our scenario,
automated validation is not applicable for alerts and incidents that do
not have associated CTIs; hence, such scenario would require a security
team to perform manual analysis.

The massive volume and variations of CTI opens the door for
automatic identification of patterns and gathering insights about CTI
using Natural Language Processing (NLP) and Machine Learning (ML)
techniques. For instance, Sonicwall has reported 9.9 billion malware
attacks in its 2020 cyber threat report (Sonicwall, 2021). The threat
research team of Sonicwall has come across more than 1,200 new
malware variants each day. Existing studies (Ibrahim et al., 2020;
Le et al., 2019; Noor et al., 2019; RFteam, 2018; Serketzis et al.,
2019; Truve, 2017; Zahedi et al., 2018; Zhou and Wang, 2019) have
highlighted the power of AI to monitor, gather and analyse security
intelligence. Recent advances have also been noticed in the use of NLP
and ML techniques to extract patterns from threat data and gain insight
about attacks and threats. The focus of these studies are application-
specific, for example, detecting anomalies (Zhou and Wang, 2019) or
automating vulnerability assessment (Le et al., 2019), which need to
be updated with changing CTI and organizational needs. These studies
required knowledge of NLP and ML to build a model for performing the
assessment or detection task. Most existing SOCs are managed SOCs
(SOC as a service), which are subscription based (Cavalancia, 2020;
Ibrahim et al., 2020). They do not have dedicated data science or ML
experts to design and update the AI based system based on their need.
Considering this scenario ‘‘Can we design an efficient system to automate
and assist the validation of security incidents and alerts with changing threat
data and user needs’’?.

Evolving threat landscapes and changing needs of security teams de-
mand a dynamic AI/ML-based validation system which can be adapted
at runtime. For instance, if a security expert expresses interest to
validate the maliciousness of a domain ‘‘URL’’, a prediction model is
built by a data scientist team that classifies a URL as malicious or
non-malicious. In an ML context, this task is known as a prediction
or classification task. We propose three different layers to differentiate
the tasks of threat data collection, validation and prediction model
building. The purpose is to hide implementation complexity of data
processing, prediction models and validators from security teams. Each
layer is controlled and developed by experts with dedicated capabili-
2

ties. Changing threat landscapes require SOCs to request new CTI and
prediction models. One possible solution to this is to build and save
prediction models for all possible attributes sets. However, building
all possible models whenever changes occur will incur significant re-
source consumption (e.g., computation time). Most SOCs have limited
resources; hence, instead of pre-building all possible combinations of
prediction models, SmartValidator is designed to build the model based
on a SOC’s demands.

We have implemented a Proof of Concept (PoC) system to evaluate
the effectiveness and efficiency of our proposed framework with two
feature engineering approaches and eight ML algorithms. We have used
an IoC form of CTI (Johnson et al., 2016) and collected open source
threat intelligence (OSINT) from public websites and a CTI platform,
MISP (MISP, 2021; RFID, 2021). The input of the developed system is
a set of attributes from a security team. For example, a security team
may want to investigate the ‘‘domain name’’ and ‘‘URL’’ to identify the
‘‘maliciousness’’ of an incident. The developed system takes these three
attributes as input where ‘‘domain name’’ and ‘‘URL’’ are the observed
attribute (𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏) and ‘‘maliciousness’’ is the unknown attribute (𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏).
The prediction models are built for classifying/ predicting 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 based
on 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏.

To capture changing contexts (i.e., security team requirements),
we have considered five 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏: (i) attack, (ii) threat type, (iii) name,
(iv) threat level and (v) event. Eighteen different sets of 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 (shown
in Table 3) are provided to validate these five attributes to demonstrate
the performance of the PoC with changing requirements. We have
designed the PoC to select the suitable feature engineering approaches
and ML algorithms at run time. Seven 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 are selected by the PoC
to predict attack and 11 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 sets are used to predict the remaining
four attributes. Hence, the PoC provided a total 51 optimal prediction
models for predicting five 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 based on the preferred 18 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏.
The results show that approximately 84% of the models have F1-
scores above 0.72 and 75% of the models have F1-scores above 0.8.
These results imply that SmartValidator is able to assist the automatic
validation of threat alerts with a high level of confidence. Most of the
models that were built with data gathered from the MISP platform can
effectively predict 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 based on 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 with a higher F1-score than
the models that were built with CTI gathered from public websites.
This demonstrates that trusted threat intelligence is more effective in
validating alerts.

The results also demonstrate the efficiency of SmartValidator with
dynamic changes in the preferred set of attributes. We pre-built all
possible models, which required us to run 814 experiments. Given a
maximum time limit of 48 h and a memory limit of 100 GB to build
each prediction model, 20% of the models failed to complete within the
time limit and given memory. Hence, it shows the difficulties a security
team would encounter in manually constructing each model. Results
further reveal that building prediction models is a time-consuming pro-
cess and requires expertise that can be automated through orchestrating
different tasks. Saving the feature engineering approaches and ML algo-
rithms helps SmartValidator to use them for predicting new attributes
based on changing CTI and SOC requirements. Thus, constructing
prediction models at run time based on a security team’s preferred
attributes sets reduces the overhead and resource consumption. The key
contributions of this work are:

• A novel AI-based framework, SmartValidator, that consists of
three layers to effectively and efficiently identify and classify CTI
for validating security alerts with changing CTI and security team
requirements.

• A PoC system that automatically built 51 models to predict five
different unknown attributes with 18 observed attributes sets
using two sources of OSINT.

• We demonstrated that SmartValidator can effectively select opti-
mal prediction models to classify CTI where approximately 75%

of optimal models have an F1-score of above 0.8.



Journal of Network and Computer Applications 202 (2022) 103370C. Islam et al.
Fig. 1. Motivation scenario illustrated (a) detection of malicious activities and validation of alerts with multiple detectors and sources of CTI respectively, (b) validation of same
alerts for different set of preferences required two different validators and different CTI.
• We showed the efficiency of SmartValidator by building pre-
diction models based on security team demands which requires
approximately 99% less models to build, thus less resources and
time consumption.

Paper organization: Section 2 presents a motivation scenario that
highlights the need for SmartValidator. Section 3 discusses the back-
ground knowledge about CTI. Section 4 introduces the proposed frame-
work, SmartValidator. Section 5 describes the large-scale experiment
that is carried out for the evaluation of SmartValidator. Section 6
demonstrates the effectiveness and efficiency of the proposed approach.
Section 7 discusses related work. Finally, Section 8 concludes the paper
with future works.

2. Motivation scenario

In this section, we motivate an AI-based solution for alert validation
through an example scenario. Fig. 1 shows a scenario where a SOC of an
organization has deployed different types of detectors, validators and
CTI to monitor and validate malicious behaviour in its network and
business data. Fig. 1(a) shows that three detectors (intrusion, phishing
email, and vulnerability detectors) are deployed to detect suspicious
and malicious activities of an organization. The information used by
detectors varies with attack types. For example, the information that
detectors use to identify an intrusion is different from identifying a
phishing email1 (Fig. 1(a)). These detectors continuously monitor an

1 https://github.com/counteractive/incident-response-plan-template/blob/
master/playbooks/playbook-phishing.md
3

organization’s network and business data2 (e.g., emails, network traffic
and business reports).

Most detectors produce alerts upon detecting malicious activity that
require a security team to act on it. These alerts require validation
before analysing them for decision making.3 In this paper, we consider
a validator performs a task related to prioritizing and identifying the
relevance or impact of alerts. Let us assume that an intrusion detector
has detected a list of malicious IP addresses. A SOC has an alert valida-
tor to validate the maliciousness of the IPs (Siemplify, 2019). Fig. 1(a)
shows that validation of different types of alerts requires different forms
of CTI. To validate IP maliciousness, blacklist and whitelist IP addresses
are used. CTI further varies from organization to organization. Each
security team has its own set of requirements (different attributes) to
validate an alert. In this scenario, the security team rely on three types
of CTI for alert validation. Considering different types of alerts have
different attributes and require different sources of CTI, a SOC needs
three validators to validate the alerts produced by three detectors.
Fig. 1(b) illustrates the use of CTI to validate alerts.

We assume, an alert of type 𝐴𝑖 ∈ 𝐴 (𝐴 is the set of alerts) is produced
by detector 𝐷1 (e.g., IDS). Each alert is represented with different
attributes (or features). The function 𝐹𝑎𝑡𝑡𝑟𝑖𝑏(𝐴𝑖) provides attributes list
of 𝐴𝑖.

𝐹𝑎𝑡𝑡𝑟𝑖𝑏(𝐴𝑖) → ⟨𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5⟩
where 𝑓1 = IP, 𝑓2 = 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑓3 = URL, 𝑓4 = 𝑎𝑡𝑡𝑎𝑐𝑘 𝑡𝑦𝑝𝑒, and

𝑓5 = 𝑡ℎ𝑟𝑒𝑎𝑡 𝑙𝑒𝑣𝑒𝑙. Considering two different security roles of a SOC have

2 https://github.com/rosenbet/demisto/tree/master/Playbooks
3 https://www.incidentresponse.com/playbooks/

https://github.com/counteractive/incident-response-plan-template/blob/master/playbooks/playbook-phishing.md
https://github.com/counteractive/incident-response-plan-template/blob/master/playbooks/playbook-phishing.md
https://github.com/rosenbet/demisto/tree/master/Playbooks
https://www.incidentresponse.com/playbooks/
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different preferences and used different attributes to validate 𝐴𝑖, two
alidators 𝑉1 and 𝑉2 are built (Fig. 1(b)). For validator 𝑉1, a security
eam prefers to validate attack type based on IP, domain and URL, thus

𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 = ⟨IP, 𝑑𝑜𝑚𝑎𝑖𝑛, URL⟩ and
𝑢𝑛1𝑎𝑡𝑡𝑟𝑖𝑏 = ⟨IP 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠⟩.
For validator 𝑉2, a security team’s preference is to validate threat

evel using attributes domain, URL and attack type, thus,
𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏 = ⟨IP, 𝑑𝑜𝑚𝑎𝑖𝑛, URL, 𝑎𝑡𝑡𝑎𝑐𝑘 𝑡𝑦𝑝𝑒⟩ and
𝑢𝑛2𝑎𝑡𝑡𝑟𝑖𝑏 = ⟨URL 𝑡ℎ𝑟𝑒𝑎𝑡 𝑙𝑒𝑣𝑒𝑙⟩.
For both cases, to perform validation, validators first extract 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏

and if available 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 from 𝐴𝑖 and then identify CTI with these
ttributes. In most cases, a security team provides CTI sources to
validator. In the next step, CTI that have 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 and 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 are

dentified. As shown in Fig. 1(b), validator 𝑉1 extracts three attributes
o validate IP maliciousness and validator 𝑉2 extracts four attributes to
alidate URL threat level. CTI1 has the attributes that are required by
alidator 𝑉1. On the other hand, CTI2 has the attributes required to

investigate URL threat level by 𝑉2. Therefore, threat data is extracted
rom CTI1 and CTI2 respectively for further investigation.

Though 𝑉1 and 𝑉2 have investigated two different sets of attributes,
he key steps (step 3.1 to step 3.4), as shown in Fig. 1(b), are the same.
he tasks 𝑉1 and 𝑉2 can be formulated as an ML classification problem,
here two different prediction models are required to be built. Building
prediction model involves pre-processing of data (e.g., 𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏), feature
ngineering, training and selecting a model, and then predicting a out-
ut (𝑢𝑛1𝑎𝑡𝑡𝑟𝑖𝑏). Many of the possible 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 of Cyber Threat Information
CTI) (e.g., domain, filename, description and comment) are textual
eatures. Traditional categorical feature engineering or transformation
pproaches are not suitable to encode the textural features, hence re-
uire the application of NLP technique. To perform validation of 𝑢𝑛1𝑎𝑡𝑡𝑟𝑖𝑏

and 𝑢𝑛2𝑎𝑡𝑡𝑟𝑖𝑏 using 𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 and 𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏, prediction models are required to be
built where input of prediction models are security team preferences.
Here, we consider the observed attributes and unknown attributes as
SOCs’ preferences/ requirements. We assume, 𝐴𝑆 as a set of a SOC’s
requirements, where

𝐴𝑆 = ⟨𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏⟩
This mean for validator 𝑉1, 𝐴𝑆1 = <𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏, 𝑢𝑛

1
𝑎𝑡𝑡𝑟𝑖𝑏> & 𝐴𝑆1 ∈ 𝐴𝑆.

For 𝑉2, 𝐴𝑆2 = <𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏, 𝑢𝑛
2
𝑎𝑡𝑡𝑟𝑖𝑏> & 𝐴𝑆2 ∈ 𝐴𝑆

Considering emerging threat patterns, a SOC may deploy new de-
tectors and update the existing rules of intrusion detectors to detect
evolving anomalies. To validate the alerts of a new detector, new
validators may be required. Thus, several changes can arise in the
scenario of Fig. 1. Following, we present the three scenarios that we
consider in this work.

• Change in Alert: With changes in alerts types, variation can be
seen in the attributes of alerts. For example, an alert of type 𝐴2
may have a different set of attributes from 𝐴1 such as times-
tamps, date, IP, organization, tools and comments. Depending on
types of attack and detector, an alert attribute changes. Building
prediction models with changing alerts might require incorpora-
tion of various types of pre-processing and features engineering
approaches.

• Change in CTI: CTI are continuously changing with changing
requirements from SOCs. In most cases, SOCs buy CTI from third
parties where attributes provided by different vendors vary, or
they build their own CTI platform. The validation of alerts relies
on the attributes available in CTI.

• Changes in Preferred Attributes Set: Change in preferred at-
tributes (𝐴𝑆) requires re-designing and building of prediction
models. A SOC does not always have dedicated data scientists or
experts to design and build prediction models. Even though the
steps of model building are repetitive (e.g., pre-processing, feature
engineering, model building and selection), few changes may be
required for adaptation of the variations as existing solutions are
not designed to automatically work with changing attributes.
4

To address these changes, we propose SmartValidator to support
the flexible design of a validator following a systematic and struc-
tured approach. The proposed framework can automatically construct
prediction models to validate alerts with changing requirements.

3. Preliminaries

This section provides background information about CTI and MISP
(an Open Source Threat Intelligence Platform).

Indicator of Compromise: IOCs provide characteristics of cyber-
ttacks and threats. Based on IOCs, a security team decides whether a
ystem is affected by a particular malware or not (Anstee, 2017; Elmel-
as, 2016; Tounsi and Rais, 2018). Examples of IOCs include domain
ame, IP, file names and md5 file hashes. Three common categories of
OCs are network indicators, host-based indicators and email indicators.
P addresses, URLs and domain names are the most popular types of
etwork indicators. The malicious file hash or signature, registry keys,
alware name and dynamic link libraries are widely used host-based

ndicators. An email indicator may consist of a source email address,
essage objects, attachments, links and source IP addresses. The source

f IOCs ranges from crowd-sourcing to government-sponsored sources.
ust having threat data is not enough to fully understand the context
r patterns of a cyberattack. For example, threat data may contain
n IP address that is used only once to attack a network. Conversely,
n associated URL in threat data might have been used many times.
herefore, threat intelligence must be extracted from the threat data
ith possible IOCs and their contextual information (Anstee, 2017;
lmellas, 2016; Ward, 2017; Tounsi and Rais, 2018). Table 1 shows
xamples of some of these websites that provide threat feeds and are
tilized for gathering OSINT. Table 2 shows examples of CTI publicly
vailable in the malware domain website (Domain, 2021).
Threat Intelligence: Threat Intelligence, also known as security

hreat intelligence, is an essential piece of CTI for a cybersecurity
eam. According to Recorded Future, ‘‘threat intelligence is the output

of the analysis based on detection, identification, classification, collec-
tion and enrichment of relevant data and information’’ (RFID, 2021).
Threat intelligence helps a security team understand what causes an
attack and what needs to be done to defend against it by gathering
contextual information about an attack. For example, security teams
use threat intelligence to validate security incidents or alerts and
enrich threat data to get more insights about a particular security
incident (Anstee, 2017; Elmellas, 2016; Tounsi and Rais, 2018; RFID,
2021; Winkler and Gomes, 2017). The gathered data is organized in a
human-readable and structured form for further analysis (Anstee, 2017;
Elmellas, 2016; Faiella et al., 2019; Future, 2019; Winkler and Gomes,
2017). Open Source Intelligence (OSINT) is gathered from various
websites (e.g., Zeus Tracker and Ransomware Tracker) that provide
information about malware or blacklist domain/IPs.

Cyber Threat Intelligence Platform: Threat intelligence platforms
allow security communities to share and collaborate to learn more
about the existing malware or threats. Using threat intelligence plat-
forms, companies can improve their countermeasures against cyber-
attacks and prepare detection and prevention mechanisms. In recent
years, the cybersecurity communities have emphasized building com-
mon threat intelligence platforms to share threat information in a
unified and structured way, and make CTI actionable (Faiella et al.,
2019; Gao et al., 2018; Menges et al., 2019; Mittal et al., 2019; Tounsi
and Rais, 2018; Ward, 2017). Various specifications and protocols such
as STIX, TAXII, Cybox, CWE, CAPEC and CVE are widely used to
describe and share threat information through common platforms (Bar-
num, 2012; Barnum et al., 2012; Connolly et al., 2014; Ramsdale
et al., 2020). Trusted Automated Exchange of Indicator Information
(TAXII) (Connolly et al., 2014) is developed as a protocol for ex-
changing threat intelligence represented in STIX format. Both STIX and
TAXII are open source and have collaborative forums (Barnum, 2012;
Connolly et al., 2014).
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Table 1
Description of each CTI sources with the Indicator of Compromise (IOCs) they contain.
Source Description

C&C Tracker (Tracker, 2019a) Contains a list of C&C IPs (command and control botnets), date, and a link to a manual which contains
text description and false positive risk value.

Feodo Tracker (Tracker, 2019b) Tracks the Feodo Trojan. Contains IP, port, and date.
Malware Domain List (Domain, 2021)Contains a searchable list of malicious domains, IP, date, domain, reverse lookups

and lists registrants. Mostly focused on phishing, Trojans, and exploit kits.
Ransomware Tracker (Tracker, 2019c)Provides overview of infrastructures used by Ransomware, status of URLs, IP address and

domain names associated with Ransomware and various block list of malicious traffic.
WHOIS data (Data, 2019) Provides a database of registered users and assignees of internet resources, which is widely used

for lookup of domain names.
Zeus Tracker (ZeusTracker, 2019) Tracks domains of Zeus Command & Control servers.
OpenPhish (OpenPhish, 2019) A list of phishing URLs and their targeted brand.
Table 2
An example of a list of observed malware domains with corresponding Indicator of Compromise (IOCs) from the website malwaredomainlist.com
(Domain, 2021).
Date Domain IP Reserve Lookup Description ASN

2017/12/04 18:50 textspeier.de 104.27.163.228 – phishing/ fraud 13335
2017/10/26 13:48 photoscape.ch/ 31.148.219.11 knigazdorovya.com trojan 14576

Setup.exe
2017/06/02 08:38 sarahdaniella.com/swift 63.247.140.224 coriandertest. trojan 19271

/SWIFT%20$.pdf.ace hmdnsgroup.com
2017/05/01 16:22 amazon-sicherheit.kunden 63.247.140.224 hosted-by.blazingfast.io phishing 49349

-ueberpruefung.xyz
2017/03/20 10:13 alegroup.info/ntnrrhst 185.61.138.74 mccfortwayne.org Ransom, Fake 197695

.PCN, Malspam
Fig. 2. An example of MISP showing evolution of a multi task Botnet.

MISP: Malware Information Sharing Platform (MISP) is one of the
most popular trusted threat intelligence platforms used by different
industries to store and share CTI (MISP, 2021; Wagner et al., 2016).
MISP is a framework for sharing and storing threat data in a structured
way (Wagner et al., 2016; Azevedo et al., 2019). MISP enables an or-
ganization to store both technical and non-technical information about
attacks, threats and malware in a structured way. The relationship
between malware and their IOCs are also available in MISP. Rules for
network Intrusion Detection Systems (IDS) can also be generated from
MISP, which can be imported into an IDS system, and hence improve
the detection of anomalies and malicious behaviour. A security team
queries MISP for relevant data, and it shows the details of the attack.
For example, Fig. 2 shows the details of the evolution of a multitask
Botnet. Tables A.11 and A.12 of Appendix A show the key attributes
gathered from MISP for this study and the percentage of each attribute.

4. Proposed framework

Fig. 3 provides an overview of our proposed framework, Smart-
Validator, that automates the identification and classification of CTI
for validation of alerts. It comprises of three layers: (i) threat data
collection layer, (ii) threat data prediction model building layer and
5

(iii) threat data validation layer. We consider each layer to have a
separation of concerns so that while updating components of one layer,
a security team does not need to worry about other layers.

Threat Data Collection layer (Section 4.1): The threat data collection
layer consists of a collector that automates the identification of CTI
information from various sources (Fig. 4). It further transforms the
gathered CTI into a unified form (if required) and passes it to the threat
data prediction model building layer.

Threat Data Prediction Model Building layer(Section 4.2): This layer
has a model builder that builds models for validation of alerts based on
a SOC’s requirements (𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏) using the gathered CTI (Fig. 5).
Pre-processing of data, feature engineering, training and evaluation of
prediction models are performed in this layer to generate candidate
validation models. The candidate models and corresponding feature
sets are saved with a SOC’s preferences for use by the threat data
validation layer at runtime to validate alert.

Threat Data Validation layer (Section 4.3): The threat data valida-
tion layer takes alerts and a SOC’s requirements as input to choose
suitable prediction models for alert validation. SOC requirements are
interpreted by an interpreter. Based on a SOC’s requirements, attributes
are extracted from alerts. The extracted attributes are used to choose
suitable prediction model from the candidate list of saved models for
predicting the unknown attributes (𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏) and perform validation of
alerts based on observed attributes (𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏).

The following sections elaborate the core components and function-
alities of each layer of SmartValidator.

4.1. Threat data collection layer

Validation of a security alert requires the identification of relevant
CTI for building a threat data prediction model. The purpose of the
prediction model is to learn the pattern of CTI for automatic validation
of alerts. Here, we have formulated the validation tasks as a classi-
fication task. For instance, to validate an IP maliciousness, a system
needs to classify IPs as malicious or non malicious, which can be
achieved through a prediction model. Similar to existing studies (Faiella
et al., 2019; Tounsi and Rais, 2018; Wagner et al., 2016), the data
collection layer gathers CTI from multiple sources and combines them
into a unified format. The data collection layer employs a collector to

gather CTI data from an organization’s preferred sources. Considering
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Fig. 3. An overview of SmartValidator for automated identification and validation (i.e., classification) of cyber threat data.
Fig. 4. Threat data collection layer — IOCs are extracted and processed from three
types of data and then combined into a unified form.

several types of CTI sources are used by an organization, deployment
of various plugins, APIs and crawlers are required to collect CTI from
these sources. Fig. 4 has shown the processing of three types of CTI data
- (i) internet data, (ii) business data and (iii) external data. These are
most commonly used CTI. Other forms of CTI can also be integrated by
following standard data processing strategies.

For processing internet data, the collector has web crawlers, scrap-
ers and parsers to gather and process CTI data from web pages (Fig. 4).
A web crawler searches and identifies reliable sites that contain threat
information and IOCs of various malware. Considering threat intelli-
gence team provides the relevant list of websites or keywords of their
interest to gather CTI (Slatman, 2021), a crawler crawls through the in-
ternet to search the relevant information. We propose a scraper as part
of the collector for filtering out unnecessary information from crawled
data. Crawling and scraping can be done on a variety of sources, such
as RSS feeds, blogs and social media, but require different types of
processing. A parser utilizes various information processing techniques
to extract information from the output of a scraper and organize the
data into a structured and language-agnostic format (e.g., markup
language such as ontology). For forums or blog posts written in natural
language, a parser is required to extract threat information from
sentences. NLP tools and techniques (e.g., Spacy and NLTK) are used
6

to build a parser based on the structure of a document and information
required by security team.

To get threat feeds from databases and CTI platforms, we design
API calls and queries that are parts of the collector. Threat feeds can
be gathered from both an organization’s internal business data and
external data (Fig. 4). In this paper, we only gather external threat
feeds. The collector can also query external data sources to find out
missing information about available threat data. For example, after
receiving an IP address, a query can be made to WHOIS query website
to search for domain name. In this way, a collector gathers different
sets of data, for example, blacklist and white list IP addresses, list of
phishing websites and so on, from different types sources. The collected
data is further combined into a unified form (e.g., dataset P, Fig. 4).
To combine the data into a unified form, we first normalized the data,
removed redundant information and then combined them. Examples of
normalization techniques include 1NF, 2NF and so forth. Depending
on validation tasks (e.g., validation of IP maliciousness or validation
of domain threat level), CTI is extracted and sent to the threat data
prediction model building layer to build a validation model.

We consider organizations (e.g., government or financial) may have
a dedicated threat intelligence teams or may use third party services
to gather CTI. Any update related to the collection of CTI, such as
adding or modifying CTI sources, deploying APIs or parsers to gather
and extract information from these CTI, and inclusion or deletion of
new data collection and normalization techniques, are performed in the
threat data collection layer by dedicated threat intelligence team.

4.2. Threat data prediction model building layer

The threat data prediction model building layer is designed to build
ML-based classification models using CTI and SOC’s preferences. For
example, if a security team wants to validate the maliciousness of an
IP considering the IP, domain and URL, an ML classification model is
built that takes IP, domain and URL and predicts IP maliciousness.
We consider these attributes (IP, domain, URL and IP maliciousness)
as SOC’s preference where 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 = {𝐼𝑃 , 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑈𝑅𝐿} and 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 =
{𝐼𝑃 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑛𝑒𝑠𝑠}. SOC’s preferences drive from organizational security
requirements and alerts.

Fig. 5 shows the core components and workflow of the threat data
prediction model building layer. It comprises of a pre-processor that
pre-processes CTI (step 1, Fig. 5) for extracting features from it. The
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Fig. 5. Threat data prediction layer — prediction models are built to predict unknown
ttributes based on observed attributes.

re-processing techniques depend on the types of attributes (e.g., cat-
gorical or text-based). For example, IP maliciousness can be either
alicious or non-malicious, which is categorical. On the other hand,
omain name is text based, as shown in Table 2. Pre-processed data is
assed to a feature engineering module where data is transformed into
eatures (numeric form) (step 2, Fig. 5), which are used as input for the
L algorithms. The reason behind this is that ML algorithms can only
ork with numerical data (Ahmim et al., 2020; RFteam, 2018; Sabir
t al., 2020; Truve, 2017). Depending on the type, size and diversity
f CTI, the data science team chooses a feature engineering approach.
he first two steps of Fig. 5 leverage simple NLP techniques for pre-
rocessing and feature engineering. Categorical values can be directly
ransformed into features using label encoding or one-hot encoding and
ext values are transformed into features using count vectorizer and
FIDF (Term Frequency-Inverse Document Frequency) techniques. The
ssociated text cleaning and pre-processing steps for each text attribute
re discussed in Appendix B.1. Common pre-processing techniques such
s tokenization, stop words removal and lemmatization are performed
efore transforming text data into features. Hence, based on the alert
ttributes types, data science teams perform data pre-processing and
elect a feature engineering approach.

The transformed data is split into training and testing datasets to
uild, select and evaluate an prediction model (step 3, Fig. 5). ML
lgorithms are applied to train models based on CTI that connects and
earns patterns in the data to derive a working model. Depending on
he nature of the training data, different models are built by a data
cience team. Traditionally a set of ML algorithms are applied to find an
lgorithm suitable for a specific dataset and user requirements (Ahmed
t al., 2016; Ahmim et al., 2020; Sabir et al., 2020). To investigate the
ffectiveness of prediction models for the validation task, we considered
set of ML algorithms (e.g., Decision Tree, Naïve Bayes, K-Nearest
eighbours and Random Forest). The details of the PoC is discussed in
ection 5. As most ML algorithms have a list of hyperparameters, vali-
ation techniques (e.g., k-fold cross-validation, random cross-validation
nd Bayesian optimization) are incorporated to select hyperparameters4

etting and feature engineering approach for a specific ML algorithm
step 4, Fig. 5).

4 Hyperparameters are user-defined values that determine details about the
L classifier before training. For example, a decision tree requires tuning the

alue of variable depth, and k-nearest neighbours has a variable number of
eighbours.
7

The built model’s performance is evaluated using the testing dataset
(step 5, Fig. 5). Different types of performance metrics (e.g., precision,
recall, accuracy and F1-score) are used to choose a model (also known
as the optimal model) that provides the best performance (details in
Section 5.6). In this work, we mainly consider F1-score for evaluation,
which is a score between 0 and 1. Higher F1-score indicates better per-
formance of a model. Fig. 5 shows how the pre-processing techniques,
feature engineering approaches and ML algorithms that are used to
build threat data prediction models are stored for future model building
process. Once an prediction model is found to have performed best, that
model can be rebuilt using both training and testing datasets. The best
models are saved with the evaluation score (step 6, Fig. 5) for using it
in the threat data validation layer.

4.3. Threat data validation layer

We design the threat data validation layer to (i) collect a SOC’s
needs, (ii) automatically orchestrate and request for CTI and prediction
models and (iii) validate alerts. Fig. 3 shows the validation layer
comprises of an interpreter, orchestrator, data processor and predictor. In
his layer, security teams of SOCs provide their preferences, 𝐴𝑆, as a
et of requirements, where 𝐴𝑆 = <𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 >. Security teams may
lso provide a minimum threshold for F1-score, which we refer to as
he confidence score of prediction models. The reason behind gathering
onfidence score is that the performance of prediction models will
iffer with variation in CTI, alerts and attributes sets. A security team
ight need a higher F1-score while dealing with safety critical data

nd sensitive information. For example, to identify IP maliciousness,
security team may request for a validation model with a minimum

onfidence score of 0.9. While categorizing comments or text messages
s spam, model performance of 0.8 or above may be approved. Se-
ection of F1-score values vary from application to application. Thus,
nstead of setting a fixed value, we consider providing security teams
he flexibility to set the confidence score based on their application
eeds.

We design Algorithm 1 describing the key steps of the threat data
alidation layer. These steps are coordinated and orchestrated by the
rchestrator. SOC preferences (𝐴𝑆 and confidence score) are the input
f Algorithm 1. The interpreter receives the SOC requirements and
xtracts observed attributes 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏, unknown attributes 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 and
onfidence scores from that (line 3). The orchestrator checks model
vailability with F1-score above the confidence score for predicting
𝑛𝑎𝑡𝑡𝑟𝑖𝑏 based on 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 (line 4). If a model is available, the attributes
re passed to the data processor, where it pre-processes and transforms
he data based on the saved pre-processing and feature engineering
pproaches (lines 5–7). Finally, the pre-processed and transformed data
s sent to the predictor, which uses the available model to predict 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏
line 8).

If a model is unavailable for the requested attributes set, e.g., for
redicting 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 based on 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏, then the orchestrator requests the
ata collector module to gather the relevant CTI data for the preferred
ttribute sets (line 9). After identifying the relevant information, the
ata collector module sends the collected CTI data to the model builder

to build an prediction model (lines 12–13). Using the CTI data from
the data collection layer, the model builder follows the model building
process as discussed in Section 4.2 (lines 14–15). After building a
model, it sends the model availability notification to the orchestrator.
Then the same process of data processing and prediction is performed.
If the requested data is unavailable, a notification is sent to a threat
intelligence team and a SOC team to gather the required CTI and
manually analyse the alerts, respectively (lines 18–19). To ensure that
alerts are not ignored when models or CTIs are unavailable, SOC teams
must keep informed that manual analysis is required.

Our proposed framework, SmartValidator, streamlines gathering,
identification and classification of CTI. SmartValidator allows a security
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Algorithm 1 Model building with orchestrator in threat data validation
layer
1: Input: AS <𝑜𝑏𝑎𝑡𝑟𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏>, confidence score
2: Output: predictedData
3: Interpret (AS, confidence score)
4: IsModels= CheckModel(AS, confidence score)
5: if IsModels true then
6: model, featureEng = getModel(AS,confidence score)
7: processedData = transformData(featureEng, AS)
8: predictedData = predictOutput(model,processedData)
9: else

10: IsData = CheckData(AS)
11: if IsData true then
12: CTIData = RetrieveData(CTI, AS)
13: model = buildModel(CTIData, AS, confidence score)
14: if model is built then
15: go to step 6
16: else
17: go to step 19
18: else
19: RequestData(AS)
20: return NotApplicable
21: return predictedData

team to swiftly make a response about incoming alerts. As most infor-
mation is generated in a structured way, it can be easily pre-processed
to share through a CTI platform such as MISP or Collective Intelligence
Framework (CIF) to benefit diverse security teams. SmartValidator can
be integrated with the existing security orchestration and automation
process to validate alerts and thus work together with the existing
security tools, such as Security Information and Event Management
(SIEM) and Endpoint Detection and Response (EDR). Microsoft Azure
Sentinel5 and Splunk6 are examples of SIEM where Limacharlie7 and

oogle Chronicle8 are considered as EDR.

. Experiment design and setup

We designed and implemented a Proof of Concept (PoC) system to
valuate SmartValidator. We expected to demonstrate effectiveness of
rediction models in validating security threat data and efficiency of
uilding prediction models based on a SOC’s requirements. The goal
f the PoC is to identify the relevant CTI and build prediction models
ased on a list of SOC’s requirements. Hence, we evaluated the PoC
ystem based on the following two Research Questions (RQ).

• RQ1. How effective is machine learning in classifying CTI for
SmartValidator?

• RQ2. How efficient is SmartValidator in selecting and build-
ing prediction models at runtime over pre-building all possible
prediction models?

To build the PoC system for SmartValidator, we implemented the
ore components of Fig. 3: the data collection layer presented in Fig. 4,
he prediction layer presented in Fig. 5 and an orchestrator for the
alidation layer described in Section 4.3.

5 https://azure.microsoft.com/en-au/services/azure-sentinel/
6 https://www.splunk.com/
7 https://www.limacharlie.io/
8 https://cloud.google.com/blog/products/identity-security/introducing-

hronicle-detect-from-google-cloud
8

Table 3
List of the observed attribute sets.
# List of attributes

𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 Date
𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏 Domain
𝑜𝑏3𝑎𝑡𝑡𝑟𝑖𝑏 IP, ASN, Owner, Country
𝑜𝑏4𝑎𝑡𝑡𝑟𝑖𝑏 Date, Domain
𝑜𝑏5𝑎𝑡𝑡𝑟𝑖𝑏 IP, ASN, Owner, Country, Domain
𝑜𝑏6𝑎𝑡𝑡𝑟𝑖𝑏 IP, ASN, Owner, Country, Date
𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 IP, ASN, Owner, Country, Domain, Date
𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,

Country, Domain, File hash, Filename
𝑜𝑏9𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,

Country, Domain, Description, Comment, File
hash, Filename

𝑜𝑏10𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,
Country, Domain, Description, Comment

𝑜𝑏11𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,
Country, Domain, Date, Timestamp, File hash ,
Filename

𝑜𝑏12𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,
Country, Domain, Date, Timestamp, Description,
Comment, File hash, Filename

𝑜𝑏13𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,
Country, Domain, Date, Timestamp, Description,
Comment

𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏 IP destination, Port, IP source, ASN, Owner,
Country, Domain, Date, Timestamp

𝑜𝑏15𝑎𝑡𝑡𝑟𝑖𝑏 Description, Comment, File hash, Filename
𝑜𝑏16𝑎𝑡𝑡𝑟𝑖𝑏 Date, Timestamp, File hash, Filename
𝑜𝑏17𝑎𝑡𝑡𝑟𝑖𝑏 Date, Timestamp, Description, Comment,

File hash, filename
𝑜𝑏18𝑎𝑡𝑡𝑟𝑖𝑏 Date, Timestamp, Description, Comment

5.1. SOC’s requirement

We defined a set of attributes (validated attributes and observed
attributes) as SOC’s requirements to carry on the experiment. These
attributes were mainly given by a team who were different than the one
that implemented the prediction models. Thus, here we considered the
team who provided the requirement as part of the SOC and the other
team as part of the data science team. This setting gave us the option
to evaluate a variety of different SOC’s requirements, to appropriately
assess the PoC system. In a practical scenario, these requirements would
usually be defined by a security team. Among the various attributes,
commonly validated attributes (𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏) are attack, threat type and
threat level. We considered them as the desired unknown attributes.
Beside them, we also considered two others attributes name and event
as the desired unknown attributes. Example of these attributes are
shown in Table A.11 in Appendix A. As shown in Table A.11, an
example of an event title (or event) is ‘‘OSINT Leviathan: Espionage actor
spear phishes maritime and defence targets’’.

As observed attributes (𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏) vary from security team to security
team, we gathered 18 different sets of observed attributes from security
team to validate the aforementioned 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏. As shown in Table 3, IP
information (i.e., ASN, IP owner, country, and domain), organization,
comments about attributes, comments about attacks, event data, timestamp
and category are the attributes that we considered in the set of observed
attributes. We selected these attributes from alert data that are also
commonly used to validate alerts generated by different IDS. We also
used the metadata of attributes such as URL, domain and filename.

5.2. Collecting CTI

We gathered CTI from two types of sources — publicly available in-

ternet data and data from an OSINT platform, MISP. CTI gathered from

https://azure.microsoft.com/en-au/services/azure-sentinel/
https://www.splunk.com/
https://www.limacharlie.io/
https://cloud.google.com/blog/products/identity-security/introducing-chronicle-detect-from-google-cloud
https://cloud.google.com/blog/products/identity-security/introducing-chronicle-detect-from-google-cloud
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these two sources is considered as dataset 1 (𝐷𝑆1) and dataset 2 (𝐷𝑆2),
respectively.

Gathering CTI from websites: We obtained a list of publicly avail-
able websites from a GitHub CTI repository (Slatman, 2021) which are
shown in Table 1. We selected these websites because they provided
malware RSS feeds and their access were not restricted (e.g., API limit).
We built web crawlers and scrapers to gather and extract the key
pieces of information from the selected websites. A parser was built to
parse the information and stored it in a structured format (i.e., a CSV
file). The gathered data had consistent tagging and was labelled with
the malware used in the attack, for example, Zeus, Citadel or Ice IX.
𝐷𝑆1 contained 4060 events and represented the data available through
public CTI feeds from websites.

Gathering CTI from MISP: We selected the MISP platform as a
threat intelligence platform due to its popularity amongst businesses
and the abundance of labelled data. We first gathered the MISP default
feeds that were written in JSON format and then built a parser to
extract the key attributes from that. 𝐷𝑆2 contained 213,736 events
and represented the data available to an organization from a dedicated
threat intelligence platform.

Gathering additional attributes: External information was gathered
utilizing the parsed attributes of both 𝐷𝑆1 and 𝐷𝑆2. For example,
the common features amongst each source were IP, domain and date.
Additional attributes were gathered from WhoIS data (e.g., a database
query of the RFC 3912 protocol) for each IP. We used the Python
cymruwhois9 module to search each IP in the WhoIS database, which
returned the IPs ASN (i.e, a unique global identifier), owner, and
country location. Besides, AlienVault forum was chosen as an external
information source. We scraped the AlienVault forum updates using
the Python module BeautifulSoup10. The AlienVault data, which were
natural language text descriptions, was searched and extracted for the
associated event and threat.

5.3. Building data processor

We built a data processor to clean, pre-process and transform the
collected data for building ML-based validators.

Cleaning and pre-processing: We used the Python scikit-learn li-
braries to pre-process the attribute values (Chen et al., 2020; Scikit-
learn, 2021). We first cleaned the data by removing null values and
removing events with missing information. We observed missing in-
formation to be relatively infrequent, resulting in minimal information
loss and a more robust model. For text values, we found two types of
natural language features from the MISP data (i) text attributes which
are short paragraphs that describe an event in natural language and are
often taken from blogs, and (ii) comments.

We first analysed the text and comments attribute to find a suitable
processing and encoding technique. Thus, simple processing techniques
were undertaken to decrease the dimensionality and remove any un-
informative words (e.g., articles and prepositions). Each piece of text
was stripped of all non-alphabetical characters, as numbers and spe-
cial characters can rapidly increase dimensionality and rarely contain
valuable information. The text was then stripped of any non-noun or
non-proper noun tokens, as nouns are the most informative part of the
text (e.g., attack names, attack types, and organization). Finally, each
word was lemmatized (i.e., changed to the base form of the word), so
that similar words can be recognized. One of the key steps we followed
was to tokenize the string values of attributes (i.e., domain, filename,
hostname, URL) where patterns exit. We removed punctuation and
special characters within a string to clean the data. We further split the
text into small tokens based on a regular expression that tokenized a
string using a given character. This separated each word within a value

9 https://pypi.org/project/cymruwhois/
10 https://pypi.org/project/beautifulsoup4/
9

Table 4
An example of one-hot encoding and label encoding for three types of attack.

Phishing DDoS SQL Attack Encoded
injection attack

0 1 0 1 DDoS 2
1 0 0 2 Phishing 1
0 1 0 3 DDoS 2
1 0 0 4 Phishing 1
1 0 0 5 Phishing 1
0 0 1 6 SQL 3

injection

Table 5
Count vectors for two sentences, S1: ‘‘Fireball is malware’’ and S2: ‘‘Malware is any
program that is harmful’’.

Fireball Is Malware Any Program That Harmful

S1 1 1 1 0 0 0 0

S2 0 2 1 1 1 1 1

(e.g., value of domain or URL) and allowed a string to be tokenized. For
example, we split the value of the URL in terms of ‘‘//’’ and ‘‘.’’. The
tokenized data were then encoded as integers to create a numeric form
of a feature vector.

Feature engineering: We encoded the categorical variables using
one-hot encoding and label encoding. One-hot encoding considers each
categorical value separately and represents each categorical variable as
a column. Label encoding represents each categorical value as a unique
integer. Table 4 shows an example of one-hot encoding in the first table
and label encoding in the second, for three types of attacks: phishing,
DDoS and SQL injection. We used the labelEncoder() method of scikit-
learn to convert the string data into numerical values. An inbuilt
function from the scikit-learn library, standardScaler(), was used to
standardize the data. The function transformed data into a normalized
distribution to remove outliers from the data, allowing for building
more accurate prediction models. The text variables (i.e., unstructured
and structured natural language) did not conform to traditional one-hot
or label encoding, as one-hot or label encoding interprets the text as a
whole. Hence, we used two techniques: count vectorization and TFIDF
as our feature engineering approach to encode text into numerical
values. Count vectorization techniques stored each tokenized word as
a column with its value being the number of times it appeared in each
respective document.

Table 5 shows the examples of count vectorization of two sentences.
The TFIDF vectorizer11 worked similar to the count vectorization,
except rather than storing counts it stored the TFIDF value of each
word. TFIDF provided a metric for how ‘important’ a word is within a
part of the text by comparing the term’s frequency in a single document
to the inverse of its frequency amongst all documents.

For the one-hot encoding setup, we used a simple count vectorizer,
and for the label encoding setup we used a TFIDF vectorizer. It should
be noted that whilst the dataset included text variables, the vast ma-
jority did not follow a natural language convention (e.g., domain or
filename). Hence, more advanced NLP techniques, such as word embed-
ding, cannot be accurately applied. The feature engineering schemes
were saved for runtime use with the model building and prediction
phase. Appendix B summarizes the pre-processing techniques that we
followed for different attributes.

5.4. Building the validation model

We built prediction models following the traditional ML pipeline
(i.e., selecting ML algorithms, building prediction models, performing

11 https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.html

https://pypi.org/project/cymruwhois/
https://pypi.org/project/beautifulsoup4/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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hyperparameter tuning and evaluating the built model). We designed
a model builder to build prediction models for various attribute sets
𝐴𝑆 (𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 and 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏). We selected eight commonly used classification
lgorithms (Caruana and Niculescu-Mizil, 2006): Decision Tree (DT),
andom Forest (RF), K-Nearest Neighbours (KNN), Support Vector
achine (SVM), Multi-Layer Perceptron (MLP), Ridge Classifier (RID),
aïve Bayes (BAY) and eXtreme Gradient Boost (XGB) (Chen and
uestrin, 2016) to cover a wide range of classifier types. Appendix B

ummarizes the ML algorithms that we considered to build the PoC
ystem. Bayesian Optimization was used to automatically tune each
odel (Snoek et al., 2012). We used a straightforward train test split

or evaluation, with 30% of the dataset hold out for testing. In a real
orld, setting the training data would be selected by the threat intel-

igence team, to ensure data quality. The built model was optimized
y performing hyperparameter tuning. The Python module scikit-learn
as used to build the prediction models, as it is one of the popular and
idely used libraries for building prediction models (Chen et al., 2020;
cikit-learn, 2021; Sabir et al., 2020).

.5. Developing the orchestrator

We designed and implemented a Python script to coordinate the
ata collector and model builder. The script worked as an orchestra-
or that automated the process from gathering SOC’s requirements to
redicting the outputs that is validating alerts. For example, we took
he SOC’s requirements as an attribute set, ⟨𝑜𝑏𝑎𝑡𝑟𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏⟩ and the
onfidence score (a value between 0 and 1). The output of the script
as the value of 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 and F1-score. In this process, the script first

hecked whether a model was available to predict 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 with 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏.
f a model was available, it then called the data processor to process
𝑜𝑏𝑎𝑡𝑟𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏⟩ and predict the value of 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏.

If a model was not found, it checked the availability of CTI with
ttributes ⟨𝑜𝑏𝑎𝑡𝑟𝑟𝑖𝑏, 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏⟩. If CTI was available, the model builder was
nvoked and models were built following the process of model building
iscussed in previous section. Here, the orchestrator used the saved
eature engineering approaches and algorithm to train the model and
hen selected the model with the best F1-score as the optimal model.
he scripts then checked the value of the F1-score. If the F1-score was

ower than the confidence score, it requested the data science team for
uilding the model and returned that there is no model available to
he security team. Otherwise, it notified the orchestrator about model
vailability and the next steps of data processing and predicting 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏

was followed and the value of 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 was returned to the security team.
If required CTI data was not available, the orchestrator notified the

security team about CTI unavailability. For example, the two CTI data
we used did not have any vulnerability description and values. Now if
we provided the vulnerability description as input and requested that
we wanted to predict the severity, the orchestrator would return no
data available.

5.6. Evaluation metrics

Evaluation metrics are needed to measure the success of a prediction
model in validating security alerts and building prediction models
on run time. This will determine the effectiveness and efficiency of
SmartValidator. Accuracy, precision, recall and F1-score are the four
commonly accepted evaluation metrics for evaluating a prediction
models performance (Chen et al., 2020; Sabir et al., 2020). The correct
and incorrect predictions are further calculated using number of (i)True
Positive (TP) (refers to correct prediction of an attributes label), (ii)
False Positive (FP) (indicates incorrect prediction of an attributes label),
(iii) True Negative (TN) (refers to correct prediction that a threat does
not have a particular label) and (iv) False Negative (FN) (indicates
incorrect prediction that a threat does not have particular label). For
example, if a model classifies a malicious IP address as non-malicious,
it is calculated as a false positive. If it refers a malicious IP address as
10
malicious it is calculated as a true positive. A true negative is when
non-malicious IPs are not classified as malicious IPs. A false negative
is if a malicious IP is not classified as such. Eq. (1) to Eq. (4) provides
details of how accuracy, recall, precision and F1-score are calculated
using TP, FP, TN and FN.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

recision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(3)

F1-score =
2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(4)

We assessed the effectiveness of the prediction models in validating
security alerts with F1-score because accuracy (Eq. (1)) is not always
a useful metric on its own. It does not capture the bias of the data.
The recall (Eq. (2)) is a measure of robustness; it displays if a model
is failing to predict the relevant samples, e.g., failing to classify IP
maliciousness correctly. It is important for the PoC system to have high
recall to ensure that no malicious events are misinterpreted or ignored.
Precision is the model’s ability to accurately predict the positive class
(malicious events), shown in Eq. (3). A low value for precision indicates
a high amount of false positives. Thus, it is important to achieve high
precision, as low precision would introduce the need for human vali-
dation of the output of SmartValidator. The F1-score can be considered
the best metric for an overall evaluation, as it considers both precision
and recall (Eq. (4)) together and evaluates each class separately. F1-
score does not have any unit as this is the harmonic mean of precision
and recall which do not have any unit as well.

We defined a confidence score between 0–1 to be used by the
security team as a threshold value for prediction models. In our PoC,
we compared the confidence score with the F1-score of the prediction
model. If a model had a lower F1-score than the confidence score, the
PoC discarded that model.

We defined computation time, as shown in Eq. (5), to evaluate
the efficiency of building prediction models based on SOC’s need.
Computation time is the summation of the training time (𝑡𝑟𝑎𝑖𝑛𝑡𝑖𝑚𝑒) and
prediction time (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒). Training time is the time required to build
a model and prediction time is the time required to predict unknown
attributes using an optimal model.

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑟𝑎𝑖𝑛𝑡𝑖𝑚𝑒 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑖𝑚𝑒 (5)

6. Evaluation and results

In this section, we present the results of the developed PoC of
SmartValidator to show the effectiveness and efficiency of a dynamic
ML-based validator to automate and assist the validation of security
alerts with changing threat data and SOC’s needs.

6.1. Evaluation of effectiveness

We evaluated the effectiveness of prediction models to answer
RQ1 which is ‘‘How effective are prediction models in classifying CTI?’’.
Specifically, we used two datasets 𝐷𝑆1 and 𝐷𝑆2, as described in Sec-
tion 5.2, for predicting five observed attributes (𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏). We collected
the datasets in a way so that each dataset was confirmed to have
at least one observed value. Finally, all experiments were conducted
on the collected datasets and different combinations of attributes sets.
Based on self-defined SOC requirements, CTI datasets were selected and
models were built. Optimal models were selected based on their effec-
tiveness for a particular attribute set. Effectiveness is measured using
the metrics described in Section 5.6. We investigated the performance

of the optimal models for classifying the threat data.
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Table 6
Performance (F1-score) of different models for prediction of attack based on 𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏
using 𝐷𝑆1 and prediction of threat type, threat level, name and event based on 𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏
sing 𝐷𝑆2.
Model 𝐷𝑆1 𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 𝐷𝑆2𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏

Attack Threat type Threat level Name Event

DT+LE 0.719 0.941 0.998 0.938 0.995
RF+LE 0.274 0.727 0.76 0.689 0.362
KNN+LE 0.594 0.912 0.986 0.917 0.902
GBAY+LE 0.312 0.15 0.343 0.102 0.077
RID+LE 0.627 0.055 0.082 0.105 0.001
SVM+LE 0.401 0.135 0.654 0.295 0.283
MLP+LE 0.546 0.762 – 0.878 –
XGB+LE 0.787 0.998 0.999 0.997 –

DT+OHE 0.587 0.917 0.988 0.905 0.926
RF+OHE 0.501 0.916 0.948 0.912 0.87
KNN+OHE 0.351 0.998 0.998 0.999 0.996
GBAY+OHE 0.382 0.677 – 0.465 0.241
RID+OHE 0.763 0.121 – 0.007 –
SVM+OHE 0.322 0.051 0.126 0.001 –
MLP+OHE 0.762 0.061 – 0.079 –
XGB+OHE 0.784 – – 0.996 –

We found that 51 optimal models were returned by the PoC system
ased on the given requirements. Among them, seven of the models
ere built using 𝐷𝑆1 to predict attack that have used 𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 to 𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏

and the other 44 models were build using 𝐷𝑆2 to predict the four other
unknown attributes based on 𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 to 𝑜𝑏18𝑎𝑡𝑡𝑟𝑖𝑏.

The performance of different ML algorithms and encoding methods
re summarized in Table 6 for the two observed attributes sets –
𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 and 𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏. The results shows that XGBoost (XGB) with Label
ncoding (LE) achieved a near perfect F1 score while using 𝐷𝑆2. We

further observed that while using One Hot Encoding (OHE), K-Nearest
Neighbours (KNN) performed better than XGB. However, considering
the time and memory constraints, XGB failed to train a model to predict
‘‘event ’’ when LE was used as an encoding method. Some of the model
building processes failed as they could not finish within the allocated
memory and time limits that were 24 h and 10 GB for 𝐷𝑆1 and 48 h
and 100 GB for 𝐷𝑆2. These limits were set and tested to investigate and
simulate computational resource limits.

Fig. 6 shows the evaluation score (F1-score) for different datasets,
labels and encoding methods. Fig. 6(a) and Fig. 6(b) shows the com-
parison of the different classifiers when trained on 𝐷𝑆1 and 𝐷𝑆2,
respectively. We first observe that ML algorithms generally performed
better using 𝐷𝑆2 data, with the exception of the Ridge classifier.
This finding demonstrates the importance of CTI data and information
quality. Prediction models require a large number of training examples
to properly learn trends and patterns. We recommend utilizing data
from CTI platforms such as MISP, as these platforms aggregate a large
quantity of verified information from a variety of sources.

Fig. 6(c) shows the comparative classifier performance across both
𝐷𝑆1 and 𝐷𝑆2. We observe a large range in classifier performance.
The variance in best classification algorithms further motivates the
need for automated model building and selection. Some ML algorithms
were not as effective for this classification task. Hence, if a human
were to repetitively use one algorithm to build models for different
set of attributes, the results would not be good (i.e., effective) for all
models. It would also be time consuming to validate every model. The
results demonstrate on average, the XGB classifier performed extremely
well, but KNN, as well as other tree-based classifiers (DT and RF) also
performed well. MLP classifiers also appear to perform well. As MLP
utilized a simplistic artificial neural network, this potentially motivates
the investigation of more sophisticated deep learning methods for
future work (Ferrag et al., 2020).

We further performed comparative analysis for predicting the five
bserved attributes in Fig. 6(d). Models generally performed well for
ll prediction tasks, but performed best when classifying threat_level.
11

o

Table 7
Optimal classifier and encoding method with evaluation score (F1-score)
for observed attributes 𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 to 𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 to predict attack using 𝐷𝑆1.

Model Attack

Optimal model F1-score

𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 KNN + LE 0.572
𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏 RID + OHE 0.537
𝑜𝑏3𝑎𝑡𝑡𝑟𝑖𝑏 SVM + OHE 0.623
𝑜𝑏4𝑎𝑡𝑡𝑟𝑖𝑏 XGB + OHE 0.728
𝑜𝑏5𝑎𝑡𝑡𝑟𝑖𝑏 RID + OHE 0.637
𝑜𝑏6𝑎𝑡𝑡𝑟𝑖𝑏 RID + OHE 0.772
𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 XGB + LE 0.787

This is potentially because threat_level has the lowest dimensionality of
the observed attributes, and hence ample training data for each class.
Correspondingly, the event attribute had lower performance due to its
high dimensionality. 𝐷𝑆1 data was used to predict attack. Performance
is noticeably worse for this attribute, with mean evaluation score of
approximately 0.5. This further emphasizes the importance of CTI
quality.

The relative effectiveness of the two encoding strategies is analysed
and shown in Fig. 6(e). These two encoding strategies also provide
a comparison of the two NLP techniques that we considered, which
are count vectorization and TFIDF vectorization. One-hot encoding
appeared to typically outperform label encoding, but the results are
relatively similar. This refers to the similar performance of count
vectorization and TFIDF, where the count vectorizer performed slightly
better, as seen under the one-hot encoding results. Similar to the
previous observation, we found that depending on the type of attributes
and algorithms, the performance of count vectorizer and TFIDF varies.
However, the performance of classification with 𝐷𝑆2, irrespective of
the encoding, built effective machine learning models (Ahmim et al.,
2020; Chen et al., 2020; Islam et al., 2019; Sabir et al., 2020).

Table 7 shows the optimal model for predicting attack using 𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏
o 𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 that were built using 𝐷𝑆1. Table 8 shows optimal model for
redicting threat type, threat level, name and event based on 𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 to

𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏 that were built using 𝐷𝑆2. Tables 7 and 8 demonstrate that for
different attribute sets different classifiers were seen to perform better.
Thus, we cannot rely on a single algorithm. Table 7 shows that the
IP extracted features that were in 𝑜𝑏3𝑎𝑡𝑡𝑟𝑖𝑏 (i.e., IP, ASN, owner, country)
performed the best singularly, out of the three available features. 𝑜𝑏5𝑎𝑡𝑡𝑟𝑖𝑏

hich had date and IP features was also actually relatively similar in
erms of predictive capability. However, by itself the IP features that
s 𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏 can only achieve a F1-Score of 0.623. Using more available
eatures increased the effectiveness of the prediction model, with the
argest feature set achieving the best F1-score of 0.787. The addition
f the domain feature to the IP feature set which formed 𝑜𝑏4𝑎𝑡𝑡𝑟𝑖𝑏 did

not significantly increase the effectiveness of the prediction model. This
is likely due to the existing correlation between the IP and domain
features. However, the date did appear to noticeably improve the F1-
score. The large difference between the best and worst models F1-scores
highlights the importance of proper feature engineering and model
selection.

Analysing the results of Table 8, we found that the optimal models
generally performed very well, obtaining extremely good evaluation
scores (F1-score). Several of the optimal models achieved a near perfect
score on the testing dataset. The models also performed noticeably
better than those trained on 𝐷𝑆1, further showcasing the need for good
eatures and a large dataset. The models which used time-based features
erformed noticeably better than similar feature sets which did not.
he time-based features likely had such strong predictive power as
nly a few MISP events were recorded close together. However, models
ithout the temporal features were still able to achieve an F1-score of

ver 0.8. The file-based features also appeared to have weak predictive
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Fig. 6. Comparative analysis of different classifiers performance (F1-score) while (a) using dataset 1, 𝐷𝑆1, (b) using dataset 2, 𝐷𝑆2, and (c) using both datasets, (d) predicting
different labels and (e) using different encoding methods. (f) number of optimal models for different evaluation score (F1-score).
Table 8
Optimal models and encoding methods with evaluation score (f1-score) for attributes sets 𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 to 𝑜𝑏18𝑎𝑡𝑡𝑟𝑖𝑏 to predict threat type, threat level,
name and event.
Observed attributes Threat type Threat level Name Event

Optimal model F1-score Optimal model F1-score Optimal model F1-score Optimal model F1-score

𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 MLP + OHE 0.648 XGB + LE 0.68 RID + OHE 0.593 DT + LE 0.275
𝑜𝑏9𝑎𝑡𝑡𝑟𝑖𝑏 SVM + OHE 0.854 XGB + LE 0.84 SVM + OHE 0.809 SVM + OHE 0.735
𝑜𝑏10𝑎𝑡𝑡𝑟𝑖𝑏 SVM + OHE 0.859 SVM + OHE 0.915 SVM + OHE 0.864 SVM + OHE 0.763
𝑜𝑏11𝑎𝑡𝑡𝑟𝑖𝑏 KNN + OHE 0.998 XGB + LE 0.999 KNN + OHE 0.999 DT + LE 0.898
𝑜𝑏12𝑎𝑡𝑡𝑟𝑖𝑏 KNN + OHE 0.997 KNN + OHE 0.999 KNN + OHE 0.998 DT + LE 0.994
𝑜𝑏13𝑎𝑡𝑡𝑟𝑖𝑏 KNN + OHE 0.998 XGB + LE 0.999 KNN + OHE 0.998 KNN + OHE 0.995
𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏 KNN + OHE 0.998 XGB + LE 0.999 KNN + OHE 0.999 KNN + OHE 0.999
𝑜𝑏15𝑎𝑡𝑡𝑟𝑖𝑏 SVM + OHE 0.873 SVM + OHE 0.862 SVM + OHE 0.813 SVM + OHE 0.725
𝑜𝑏16𝑎𝑡𝑡𝑟𝑖𝑏 XGB + LE 0.998 XGB + LE 1 KNN + OHE 0.998 DT + LE 0.996
𝑜𝑏17𝑎𝑡𝑡𝑟𝑖𝑏 XGB + LE 0.997 XGB + LE 0.999 KNN + OHE 0.999 RF + OHE 0.865
𝑜𝑏18𝑎𝑡𝑡𝑟𝑖𝑏 XGB + LE 0.998 XGB + LE 1 KNN + OHE 0.998 DT + LE 0.996
w
b

power as their inclusion or exclusion appeared to have very little
impact on the evaluation score. The results of Table 8 further reflects
that the event label was harder to predict than other three labels. This

as likely because event was the label with the highest number of
lasses. Interestingly, tree-based classifiers seemed to perform better
or the event label. However, it should be noted that a lot of the more
ophisticated models timed-out for the event label, so their results were

not recorded. It can also be seen that thethreat level was the easiest to
redict, likely because it had the lowest number of classes. Fig. 6(d)
isplays the huge variance in F1-scores of trained models for different
abels.

We further analysed the classification confidence of the models
f SmartValidator on the collected data. The evaluation results are
isualized in Fig. 6(f). We consider different confidence scores (0.6–0.9)
s with the variation in attributes sets, preference of confidence score
lso varies. Fig. 6(f) shows that at runtime, with confidence score of
.8, 80% of the models that were built based on 𝐷𝑆2 fits the need of a
OC. These models were built based on the saved feature engineering
nd ML algorithms. Fig. 6(f) provides an overview to the security team
12
whether they can rely on a dataset where the performance is not up to
their requirements. It shows with increase in the confidence score the
number of models above the confidence score decreases. Obviously, it
can be seen that the models on 𝐷𝑆2 classified the attributes with a
much higher confidence. We found that one of the key reasons behind
this is that 𝐷𝑆1 had comparatively less data elements than 𝐷𝑆2. Thus,

ith 𝐷𝑆2 capturing the variation in data and correlating them provided
etter results than 𝐷𝑆1. The results show that approximately 84% of the

51 optimal models had an F1-score (or confidence score) above 0.72
and 75% of the models had F1-score above 0.8. Most of the models
that were built with data gathered from CTI platforms can effectively
predict 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏 based on 𝑜𝑏𝑎𝑡𝑡𝑟𝑖𝑏 with a higher F1-score than the models
that were built with CTI gathered from public websites.

In summary, the MISP dataset (i.e., 𝐷𝑆2) was found to be a high-
quality dataset that worked well with automated classification and
thus validation of alerts. Hence, using attributes that are representative
of possible threat data, prediction models can be built to effectively
validate alerts with a substantial degree of accuracy, precision and
recall. The results of 𝐷𝑆 reflect that ML based validation models can
2
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be used to effectively validate the alerts with high quality CTI like 𝐷𝑆2.
Model choice and alternatives are seen to be important steps to find the
optimal models, as for different attributes sets the PoC has returned
different models.

6.2. Evaluation of efficiency

To demonstrate the efficiency of SmartValidator, we answer RQ2
that is ‘‘How efficient is SmartValidator in selecting and building prediction
models on runtime over pre-building prediction models?’’.

In SmartValidator, we propose to build the models at run time based
n SOC’s requirements instead of pre-building all possible models.
e considered the time to build possible model combinations of the

ight aforementioned classifier algorithms as a baseline to compare
he efficiency of SmartValidator. We observed that it was infeasible
o pre-build models for every possible combination of features. For
𝑆1, there were 62 possible feature combinations, and for 𝐷𝑆2 there

were 8190. This would increase the number of experiments for 𝐷𝑆2 to
524,160. For predicting the five unknown attributes with 18 attribute
sets we would only require to run 1440 experiments; only 0.26% of
the total experiments. Thus, for calculating the efficiency, that is the
computation time, based on SOC’s requirement the PoC ran a total of
816 experiments; 112 experiments for DS1 (8 ML algorithms × 7 input
attribute sets × 1 output attribute × 2 encoding methods) and 704
experiments for DS2 (8 ML algorithms × 11 input attribute sets × 4
output attributes × 2 encoding methods) to test all combinations of the
18 observed attribute sets, prediction models, encoding methods and
five unknown attributes (i.e., classification labels).

We considered the total time as a baseline to evaluate the efficiency
of building the model at runtime. Here we attempted to simulate the
resource limitations of model construction for a real-world environ-
ment. We considered 𝐷𝑆1 as a lightweight dataset and assigned the
restrictions of 24 h runtime and 10 GB of memory, whereas 𝐷𝑆2 was
a heavyweight dataset and assigned a 48 h runtime limit and 100 GB
of memory. Any experiment that exceeded this run time or consumed
too much memory would be aborted, as it was deemed impractical due
to organizations’ strict resources and fast response requirements (Islam
et al., 2019; Sonicwall, 2021). In this result section, we reported the
efficiency in terms of time.

For 𝐷𝑆1, all 112 experiments completed successfully. However, for
𝐷𝑆2, 169 of the 704 experiments failed to finish whilst enforcing our
experimental setup. The most common classifier model to time out were
MLP and XGB, as these models had a significantly larger training time.
For these failed jobs, 149 out of 169 jobs were either for the event
or threat level label, as these datasets had many more valid entries,
and thus also took more time and memory to train. Similarly, 116 of
the failed jobs used one-hot encoding, as this encoding method was
much less efficient than label encoding, due to every possible value
adding a dimension to the encoded input. However, 53 of the label
encoding experiments also failed due to the size of the text features.
These features were encoded with very high dimensionality due to the
lack of a natural language convention. To investigate this issue further
in our future work, we plan to investigate efficient encoding methods
through vocabulary size and dimensionality reduction.

Table 9 and Table 10 show the training time and prediction time of
the optimal models that were built based on 𝐷𝑆1 and 𝐷𝑆2 respectively.
The experimental results show that it is extremely inefficient to pre-
build a large number of prediction models. For 𝐷𝑆1 the total training
time was 61,064 s (0.7 days), and for 𝐷𝑆2 the total training time
was 7,010,279 s (81.1 days). The prediction time of a model was
significantly faster than the training time, which further encouraged
the use of validation models. On average, models made predictions in
0.6% of the training time for 𝐷𝑆1 (0.09 s), and 2.9% for 𝐷𝑆2 (17.29 s).

Fig. 7 shows the logarithmic distribution of the training time for
different datasets, labels and encoding methods. The logarithmic distri-
13

bution of training times for 𝐷𝑆1, 𝐷𝑆2 and both 𝐷𝑆1 and 𝐷𝑆2 is shown
Table 9
Training time and prediction time of optimal models in seconds for
attribute sets 𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 to 𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 to predict attack using 𝐷𝑆1.

Model Attack

Optimal model Train time Predict time

𝑜𝑏1𝑎𝑡𝑡𝑟𝑖𝑏 KNN + LE 758 0.676
𝑜𝑏2𝑎𝑡𝑡𝑟𝑖𝑏 RID + OHE 0.90 0.002
𝑜𝑏3𝑎𝑡𝑡𝑟𝑖𝑏 SVM + OHE 482 0.001
𝑜𝑏4𝑎𝑡𝑡𝑟𝑖𝑏 XGB + OHE 2597 0.196
𝑜𝑏5𝑎𝑡𝑡𝑟𝑖𝑏 RID + OHE 5.6 0.001
𝑜𝑏6𝑎𝑡𝑡𝑟𝑖𝑏 RID + OHE 2.2 0.001
𝑜𝑏7𝑎𝑡𝑡𝑟𝑖𝑏 XGB + LE 1422.9 0.09

in Fig. 7(a), Fig. 7(b) and Fig. 7(c), respectively. It should be noted that
Fig. 7 did not consider the run time of experiments which were timed
out. As shown in Fig. 7, the run times for more intensive models are
skewed to the left. Noticeably, the Naïve Bayes (GBAY) classifiers were
trained near instantaneously, as these models did not require heavy
fitting to the data. DT similarly was trained faster for both datasets,
due to the simplicity of this model. Fig. 7(a) shows for 𝐷𝑆1, SVM,
KNN and MLP required an average of 10–15 min to train. However,
the XGB classifier took significantly the longest time to train with a
median value of 36 min. For 𝐷𝑆2, the average overall training time was
217 min (shown in Fig. 7(b)) which was significantly larger than the
average overall training time of 9 min for 𝐷𝑆1, due to the substantial
dataset size increase. However, XGB had a significantly larger training
time of over 8 h. We observed that the runtime between RID and SVM
was quite different even though both are linear classifiers (Fig. 7(c)).
The SVM classifier took an average of 30 min to train on 𝐷𝑆2 due
to hyperparameter optimization, whereas the RID classifier took an
average of 10 s as they did not require any significant hyperparameters.
These observations highlight the importance of SOC requirements, as
we can see a trade-off between model performance and training time.
XGB is the best performing model on average, but also exhibits the
largest training time. Hence, SOC analysts would need to weigh model
effectiveness against efficiency.

Fig. 7(d) displays the training time for completed experiments for
each predicted attribute. Models targeted towards predicting the attack
attribute only took an average training time of 9 min, as they were
trained using the much smaller 𝐷𝑆1 dataset in comparison to the
other attributes that were trained using 𝐷𝑆2. Models took an average
of 2 h to train for the name attribute, in comparison to threat_level,
threat_type and event, which took a mean time of around 4.5 h. This
could be because the training set was much smaller for the name
attribute, as not as many CTI entries were assigned such information.
Similarly, it should be noted that a large portion of the event and
threat_level experiments timed out, as the training set was larger for
these attributes, due to more valid entries.

Fig. 7(e) reflects that the training time did not significantly dif-
fer between encoding methods. This is because the major encoding
dimensionality came from the domain and filename features, which
were treated as text attributes and were thus only one-hot encoded in
our experiments. However, one-hot encoding usually exhibited larger
training times, as it has much higher dimensionality and is thus less
efficient. For 𝐷𝑆1, one-hot experiments took an extra 4.6 min on
average (11.3 min vs 6.8 min). For 𝐷𝑆2, one-hot experiments took an
extra 18.9 min on average (227.7 min vs 208.8 min).

prediction models were built by experts (i.e., data scientists) who
have the knowledge of ML technologies and pipeline to automatically
validate the alerts. We observed that for changing SOC requirements,
interaction or collaboration were required among the security team and
the data science team where a security team specified the requirements
and requested for the models they need. If the data required by the

data science team were not available, they needed to request the
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Table 10
Training time and prediction time of optimal models in seconds that were built to predict threat type, threat level, name and event based on attributes 𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 to 𝑜𝑏18𝑎𝑡𝑡𝑟𝑖𝑏 using 𝐷𝑆2

Observed
attributes

Threat type Threat level Name Event

Optimal
model

Train
time

Predict
time

Optimal
model

train
Time

Predict
time

Optimal
model

train time Predict
time

Optimal
model

Train
time

Predict
time

𝑜𝑏8𝑎𝑡𝑡𝑟𝑖𝑏 MLP+OHE 166623 0.18 XGB+LE 111788 56.86 RID+OHE 10959 0.036 DT+LE 289.87 0.199
𝑜𝑏9𝑎𝑡𝑡𝑟𝑖𝑏 SVM+OHE 1141.1 0.031 XGB+LE 144473 139.2 SVM+OHE 925.37 0.016 SVM+OHE 37846 0.686
𝑜𝑏10𝑎𝑡𝑡𝑟𝑖𝑏 SVM+OHE 1199.66 0.024 SVM+OHE 804.92 0.006 SVM+OHE 994.43 0.014 SVM+OHE 27004 0.657
𝑜𝑏11𝑎𝑡𝑡𝑟𝑖𝑏 KNN+OHE 2599.72 23.1 XGB+LE 19190 3.115 KNN+OHE 984.94 5.98 DT+LE 371.38 0.204
𝑜𝑏12𝑎𝑡𝑡𝑟𝑖𝑏 KNN+OHE 2592.79 22.11 KNN+OHE 16871 176.6 KNN+OHE 2795.24 14.56 DT+LE 534.94 0.197
𝑜𝑏13𝑎𝑡𝑡𝑟𝑖𝑏 KNN+OHE 3177.3 32.04 XGB+LE 27067 4.296 KNN+OHE 1178.39 9.311 KNN+OHE 18065 259.95
𝑜𝑏14𝑎𝑡𝑡𝑟𝑖𝑏 KNN+OHE 2535.45 22.09 XGB+LE 16036 2.556 KNN+OHE 951.54 6.713 KNN+OHE 16731 224.98
𝑜𝑏15𝑎𝑡𝑡𝑟𝑖𝑏 SVM+OHE 1081.05 0.015 SVM+OHE 739.58 0.004 SVM+OHE 1019.56 0.007 SVM+OHE 21275 0.369
𝑜𝑏16𝑎𝑡𝑡𝑟𝑖𝑏 XGB+LE 10552.3 21.38 XGB+LE 4033.701 1.913 KNN+OHE 899.12 5.679 DT+LE 102.35 0.213
𝑜𝑏17𝑎𝑡𝑡𝑟𝑖𝑏 XGB+LE 19602.7 19.32 XGB+LE 13950.9 3.938 KNN+OHE 1005.59 6.64 RF+OHE 7036.7 15.78
𝑜𝑏18𝑎𝑡𝑡𝑟𝑖𝑏 XGB+LE 14257.7 18.57 XGB+LE 8569.79 3.175 KNN+OHE 949.95 5.611 DT+LE 142.76 0.22
Fig. 7. Comparative analysis of time in seconds required to train different ML based validation models with (a) dataset 1, (b) dataset 2, (c) both datasets, (d) different labels and
(e) encoding methods.
threat intelligence team who gathered the requested information and
updated the relevant list of information. Hence, the model required
redesigning and further actions needed to be performed to achieve the
best prediction models. Whilst using the PoC based on SmartValidator,
these interaction could be minimized, by managing the interaction
through the orchestrator. In this way, the orchestrator requested the
model builder to build the required validation model. Constructing the
models automatically based on a SOC’s needs required less time and
was more feasible than constructing possible model for all combination
of attribute sets.

Evaluating the efficiency of SmartValidator, we found that Smart-
Validator successfully identified and classified threat data required for
alert validation. The same framework can be used to automate the
validation of newly listed alerts, with new data sources. The data
science team requires to map the suitable algorithm with suitable
14

attributes sets and define the required data sources.
6.3. Discussion

We consider the same attributes sets and CTI sources that are
used for security incident and alert validation for three validation
approaches. The validation approaches are (i) manual validation, (ii)
pre-building prediction models and (iii) automatic construction of pre-
diction models based on SOC’s requirements

In manual validation, for each attribute or set of attributes, a
security team first searched for attribute types and then looked for
the relevant CTI availability. A security team used their previous ex-
perience to select the CTI to perform the validation. For example, to
validate a malicious IP, a security team collected the blacklisted IP
addresses and then looked for the IPs on the list. They further used
WhoIS database to identify the relevant information about suspected
IPs. The security team needed to manually write queries or call APIs to
find and extract information for CTI and required knowledge about the
underlying CTI sources. For similar types of alerts or changing context

(i.e., change in CTI, alerts or SOC’s requirement), the same sequence
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of actions were repeated, that cost significant man-hours and required
knowledge about the underlying plugin, API, CTI sources and so on.

For changing context while following approach 2 (pre-building pre-
diction models), the security team needed to request the data science
team to train and build the possible prediction models for the new
context. Section 6.2 reveals that to build prediction models each time a
change occurs is not feasible. With automatic construction of prediction
models, each time a SOC requested for a validation task, the mod-
els were built automatically. With changing context, the orchestrator
coordinated the data collection and model building process that also
freed the security team from coordinating and communicating with
the data science team and also reduced the delay incurred due to
communication. In this work, we have experimentally evaluated the
performance of SmartValidator. We did not discuss the amount of
time required by the security team to perform the validation activities
or the time required for communication between the security team
and data science team. This will also include the time gap between
a request being made and the time for the security team to get the
model. In future work, we plan to evaluate SmartValidator in a real
SOC environment to further demonstrate how SmartValidator can be
beneficial in a SOC environment. For example, the effort required to
manage the PoC system versus the cost saving from automation. Further
we want to evaluate the maximum upfront cost to incorporate the PoC
system in a real SOC environment.

For automating construction of ML-based validation models, the
PoC followed three major steps - (i) collecting and processing the data,
(ii) training the classifier and (iii) running the prediction model. Step
1 required a large amount of time (in hours) as there were hundreds
of thousands of data points to download and process, step 2 took
a reasonable amount of time (in minutes) as the data were needed
to be encoded and the choice of classifier were needed to train and
optimize its hyperparameters. Step 3 was reasonably fast as it only
needed time (in seconds) to apply a pre-trained model. These steps
were bundled into an installable python package which could be made
publicly available. We designed the PoC in a modular fashion so that
it can be integrated into other network-enabled services to gain more
information about network security. The system could easily be built
for the future improvements.

To validate alerts coming from an IDS, the developed PoC system
can be extended to first receive the IDS alerts over a network. After
parsing the alert attributes (which would be similar to the attributes
sets used in our PoC), the next steps are to transform the alert attributes
into features, and then look for potential CTI to correlate the alerts
information into patterns by building prediction models to predict
suspicious behaviour. Furthermore, the alerts can be validated using
the models and the validated output can display security context of the
network in a graphical user interface that is easy to understand. The
PoC system can be enhanced to provide API that can be integrated as
a part of a SOC’s existing security system, such as middleware for EDR
or SIEM.

In our experiment, we have selected two types of CTI — one is
gathered from the websites, and another is from an OSINT platform
MISP, which is widely used by industry as it contains high-quality data
with enriched IOCs. We consider the confidence score of users to ensure
that the models with low evaluation scores are not selected. We also
merged multiple data sources to enrich CTI. The experimental results
show that while using MISP, SmartValidator performs better than when
using web data. We assert that this is due to the high quality of MISP.
The lower level of CTIs used in our experiment can be replaced with
higher quality CTIs such as TTP, where SmartValidator will perform the
same steps from identifying CTIs to building models and performing the
validation. The prediction models can be enriched with advanced IOC
and TTP with more details about the threats.

The key steps identified to improve the models automatically built
through SmartValidator are effective feature encoding, hyperparame-
15

ter optimization, data distribution, feature extraction, dimensionality
reduction and classifier selection. Increasing the size of the dataset and
number of features increases the F1-score. The dimensionality of the
categorical variables needs to be decreased. It is worth noting that our
investigation is by no means exhaustive; we adopt basic ML principles
and NLP techniques to develop a simplistic PoC. We plan to investigate
more ML techniques such as data balancing, normalization and feature
selection with diverse types of CTI. Similarly, we intend to investigate
more sophisticated NLP techniques, such as word embeddings that can
capture semantic information of the natural language attributes.

We found that CTI datasets contain highly multi-variate categorical
variables. Highly dimensional problems like this are likely to be linearly
separable, as we can separate any d+1 points in a d-dimensional space
with a linear classifier, regardless of how the points are labelled. We
further found that overall ensemble classifiers such as XGB performed
better than the other selected seven algorithms.

As shown in Fig. 3, we consider that dedicated expertise is required
(e.g., a data scientist) to build prediction models, which in most cases is
different from the SOC team using the models for validation task. The
prediction models are built by experts (e.g., data scientists, ML experts,
or developers) who are knowledgeable about ML libraries, feature engi-
neering and algorithms. Considering a SOC’s security team capability,
the model building process can also be replaced with Automated Ma-
chine Learning (AutoML)12 framework such as Google Cloud AutoML.13

AutoML frameworks are designed to provide ML as a service, where
a security team is required to provide the pre-processed data and for
some cases the transformed data. It considers multiple ML algorithms
in a pipeline to evaluate the performance, perform hyperparameter
tuning and validation in an attempt to improve the performance. An
AutoML framework provides a list of optimal models. For example,
TPOTClassifier14 is an automated ML classifier that is developed in an
attempt to automate the ML pipeline in python. It explores prediction
models configurations that a data analyst or security analyst may not
consider and attempts to fine-tune the model to achieve the most
optimized model. Hence, the model builder of our proposed SmartVal-
idator can be developed following the process discussed in Fig. 5 or
using an AutoML framework. Thus, depending on an organizations SOC
capabilities they may use an AutoML framework instead of building the
prediction models with assistance of data scientist.

SOC teams overwhelmed with massive volume of alerts failed to
respond to a security incident even they had the alerts and correspond-
ing information in their CTIs.15 Hence, we assert that the manual and
repetitive validation task can be automated through SmartValidator,
whereas more critical or unknown alerts and incidents would still
require human involvement. In future work, we plan to extend the PoC
to provide more explainable output so that SOC can make decisions
based on the validated output, where prediction model choice and
alternatives would be captured with explanation.

6.4. Limitation of SmartValidator

The experimental results show the effectiveness of SmartValidator.
However, we observed several cases in which SmartValidator is unable
to perform the validation. Furthermore using CTI to validate alerts
for unknown known, unknown or zero-day attacks might not always
be practical. To empirically investigate this, we ran an experiment
separately to explore the ability of SmartValidator to detect unknown
alerts. For our experiment, we used the alert data of Snort and selected
IP information that is 𝑜𝑏3𝑎𝑡𝑡𝑟𝑖𝑏 to predict threat level. To validate such
information, we used SmartValidator to build a model trained exclu-
sively with the MISP data (𝐷𝑆2), so that the Snort alert data is almost

12 https://www.automl.org/automl/
13 https://cloud.google.com/automl
14 http://epistasislab.github.io/tpot/api/
15
 https://www.trendmicro.com/explore/en_gb_soc-research

https://www.automl.org/automl/
https://cloud.google.com/automl
http://epistasislab.github.io/tpot/api/
https://www.trendmicro.com/explore/en_gb_soc-research
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entirely unseen. The Snort alert data contained 16317 distant IPs, for
which only 78 of the IPs were seen in the our MISP training dataset. The
prediction model achieved an F1-score of 0.307 which implies Smart-
Validator has some capability for prediction of unknown alerts, albeit
limited. Even though the alerts and IPs are unseen, the prediction model
was still able to detect some patterns inferred from the ASN, IP owner
and country attributes. We assert that due to the intelligent nature and
the ability to learn the underlying semantic patterns, the models built
with SmartValidator have the potential to validate some unseen values
of unknown attributes (i.e., unknown attributes for which the model is
built depending on the observed attributes). If the alert data is entirely
unseen, i.e., the IP, ASN, owner and country are all uncontained in the
training data, then SmartValidator will predict an output based on the
most common value in the training data.

To validate any unknown attributes (i.e., 𝑢𝑛𝑎𝑡𝑡𝑟𝑖𝑏) with specific val-
ues, SmartValidator always needs the observed attributes as input to
build a model. Therefore, even if the given value of unknown attributes
is not seen in the training data, it is still possible to make a correct
prediction by learning the patterns from the model building phase. For
example, malicious IPs can have the same domain and threat actors.
Here, an IP that has not been seen before can be identified as malicious,
observing the threat actors and the domain. However, it is always
possible that a trained model can fail to correctly predict IPs, which is
a limitation of our proposed approach. We observed there are the cases
when the observed attributes are not representative for capturing and
learning patterns about the unknown attributes. SmartValidator will
not be applicable to automate the validation tasks in these scenarios.
Quantifiable investigation of this limitation is out of the scope of this
work; but it is an exciting area of exploration for future research.

CTI is time-sensitive. Hence, SOC teams will need to update the
model whenever a new CTI is available. The framework can further
be extended to capture the timeliness of the CTI used for building the
models and keep track of the models with up-to-date CTI. However,
all the CTI will not be updated simultaneously; thus, changing all the
models whenever there is an update in the CTI will not be feasible.
SmartValidator can be extended to handle this situation by retraining
the model when new requests come and retraining and evaluating the
available model built based on old CTI.

There can be bad quality of CTI sources which may affect the per-
formance of SmartValidator. For example, it is possible that the models
infer wrong patterns with bad quality data and consider legitimate or
benign IPs as malicious. There is a need of empirical studies that focus
on ensuring the quality of CTIs. However, this is not within the scope
of this study.

6.5. Threats to validity

Construct Validity: Our choice of data for our evaluation setup may
not be suitable. We have considered CTI data to also be representative
of alert attributes, as CTI is often generated from existing security
alerts from external organizations. However, the classifiers have not
yet been tested thoroughly with real-world internal business data. This
evaluation will be attempted in future work.

Internal Validity: A potential concern is that our models are not
properly optimized. The hyperparameter tuning was performed for
a specific set of configurations, as testing hyperparameters with all
possible combination would take a large amount of time that may not
justify here. Moreover, knowing all the combination of hyperparame-
ters is quite impossible. Similarly, the features that we have selected
to train our models are non-exhaustive. The attribute sets selected
were chosen based on the attributes used for validating alerts through
security orchestration. The purpose was to show that SmartValidator
can automate the construction of prediction models by identifying the
CTI and the constructed prediction models can effectively validate
alerts based on SOC’s requirement. The attributes list might not reflect
16
a complete list of attributes for validating certain alerts, but our system
can be easily extended to several other attack scenarios.

External Validity: Our experiments may not generalize to other
atasets. The built classifiers and prediction models were evaluated
ased on simulated alerts attributes sets and publicly available CTIs
uch as MISP.

. Related work

Research trends are seen in the use of Machine Learning (ML)
nd Deep Learning (DL) in cybersecurity domain for detection and
lassification of cyberattacks. Most of the existing literature focused on
sing AI techniques such as NLP, ML and DL tools and techniques to
dentify and detect cyber attacks such as malware, network intrusion,
ata exploitation and vulnerabilities (Ahmed et al., 2016; Ahmim et al.,
020; Ferrag et al., 2020; Gamage and Samarabandu, 2020; Gibert
t al., 2020; Sabir et al., 2020; Lin et al., 2020). ML algorithms are used
o extract knowledge from open source public repositories which are
ater used to analyse attacks, or validate alerts. Although automation
as been achieved in detecting and analysis of attacks, validation
f alerts and incidents still requires SOC’s involvement (Islam et al.,
019).

CTI is used by security experts of SOCs to analyse and validate
lerts. To ease the use of CTI, researchers have been trying to come
p with a unified structured for sharing CTI (Menges et al., 2019;
ounsi and Rais, 2018). STIX (Barnum, 2012), TAXII (Connolly et al.,
014), CyBox (Barnum et al., 2012) and UCO (Menges et al., 2019) are
opular among them. Use of Artificial Intelligence (AI) is encouraged
or identifying, gathering and extracting CTI objects (Future, 2019;
amar et al., 2017; Truve, 2017). Various AI tools and techniques
re used for knowledge extraction, representation and analytics of
TI (Brazhuk, 2019; Tounsi and Rais, 2018). For example, Zahedi et al.
2018) has applied topic modelling techniques such as LDA to find the
ecurity relevant topics from open source repositories such as GitHub.
nother example is a system used by EY (2020) who mined previous

hreat data and then analyse it to give information on threats. Using
his information, they can respond to attacks and continuously monitor
system. They place data collectors at points of high movement in a

etwork, like a server, where a system can continuously analyse data
nd keep the system safe. Attacks detected can be used to harvest
OCs and analysed to discover security issues within the network.
ecorded Future (widely known CTI service providers RFID, 2021) also
laborated on the fact that threat data can be found in a large variety of
laces such as Tweets, Facebook posts and emails. They also use AI to
ecognize patterns in email so that phishing emails can be found based
n the information of the sender or file attached.

Recent advances in CTI domain have drawn attention to the use
f the existing knowledge to automate the manual analysis of human
xperts and enrichment of quality CTIs (Azevedo et al., 2019; Edwards
t al., 2017; Noor et al., 2019; Zhou and Wang, 2019). For example, vul-
erability description of NVD like databases are being used to predict
he severity, confidentiality and availability of threats. Le et al. (2019)
ave used NLP and traditional ML algorithms to perform automated
ulnerability assessment using vulnerability description of open source
ublic repositories. Noor et al. (2019) have used data provided by STIX
nd Mitre corporation to identify the documents related to attacks.
zevedo et al. have proposed a platform Pure to improve quality of
TI in the form of enriched IoCs by automatically correlating and
ggregating the IoCs (Azevedo et al., 2019). They have evaluated the
erformance of the proposed platform with 34 OSINT feeds gathered
rom MISP.

One recent study by Recorded Future has laid out four ways of
sing AI techniques to extract CTI from a detected attack (Truve, 2017).
hey have defined risk score metrics to identify malicious network
ctivity. This extends the classification from being just about whether
n attack has occurred and provides more in-depth information on the
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threat (RFteam, 2018; Truve, 2017). Recorded Future has used NLP to
increase the range of possible data sources by removing the limit on just
structured information (Truve, 2017). They utilize extracted text and
perform classification for the language, topic and company. They have
applied ML and NLP techniques to rank documents to identify malware
data attacks. Their model also considers different classifications needed
like scoring a risk value. They do not always use ML for scoring a risk
value as they often have a rule-based system for the classifier to follow.

Unlike the above-mentioned work, we propose SmartValidator to
utilize NLP and ML techniques to assist in automating validation of
security alerts and incident. To the best of our knowledge, this is
the first attempt to use CTI, such as MISP data, to automate the
classification and validation of security threat data based on a SOC’s
preferences. Here, we have investigated how effective ML algorithms
are while classifying CTI to assist in alert validation. Unlike the existing
works, where possible prediction models are pre-built, here we propose
to build the models on demand. We have demonstrated the efficiency
of constructing prediction models dynamically.

8. Conclusion

Many organizations are facing difficulty to keep pace with the
changing threat landscape as security experts need to identify and
analyse threat data in most circumstances. Without the indulgence
of automation techniques, it is impossible to reduce the burden of
analysing the CTI to make a timely decision. In this work, we propose
a novel framework SmartValidator, to build an effective and efficient
validation tool using CTI that automates the validation of the security
alerts and incidents based on SOC’s preferences. Different from the
manual approaches, SmartValidator is designed in a way so that SOCs
can add their requirements without worrying about collecting CTI and
using CTI to build a validation model. SmartValidator consists of three
layers: threat data collection, threat data prediction model building
and threat data validation. Different teams are responsible for updating
the components of different layers, thus freeing security teams from
learning data processing and model building techniques. The validation
task is designed as a classification problem that leverages existing NLP
and ML techniques to extract features from CTI and learn patterns for
alert validation. We developed a Proof of Concept (PoC) system to
automatically extract features from CTI and build prediction models
based on the preferences of SOCs. A SOC’s preferences are collected as
a set of attributes sets: observed and unknown attributes, where the
task of the PoC is to predict unknown attributes based on observed
attributes.

We have demonstrated the effectiveness of SmartValidator by pre-
dicting attack, events, threat type, threat level and name. It collected
and processed data from public websites and MISP. Next, CTI with
preferred attributes sets were selected to build prediction models. Eight
ML algorithms were ran to build and select the models with the highest
F1-score. The best model was used to predict the unknown attributes
and thus validate alerts. The developed PoC constructed validation
models, and can be used to validate alerts generated by the threat
detection tools and find the missing information to store the data in
a structured format. The results show prediction models are effective
in validating security alerts. Building prediction models at run time are
more efficient then building prediction models for all possible attributes
sets and CTI.

In future work, we plan to extend the PoC system to reduce the
amount of data that is sent to the SIEM tool, thus reducing the cost
of data analysis. The system can also be extended to reduce the or-
ganizational dependence on human expertise to take actions against
security threats such as blocking ports or identifying maliciousness
of an incident. The proposed framework can assist an organization’s
security team to focus on decision making, rather than manually ex-
tracting and validating security alerts and incidents. The framework can
also be leveraged to provide the benefit to choose CTI suitable for an
17

organization’s application rather than using generalized CTI.
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Appendix A. Example of MISP attribute

Tables A.11 and A.12 show the key attributes of MISP and the
percentage of each attribute used in this study.

Appendix B. Experiment details

B.1. Data pre-processing

We conducted the pre-processing using Python ‘spaCy’ module.
Following are the details of pre-processing of 𝐷𝑆2.

• The event’s tools/malware and threat actor are extracted from
misp-galaxy event tags. Tags that are labelled with threat-actor
are treated as threat actors. Otherwise, it is treated as a tool or
malware.

• The port is extracted from any IP attribute that contains a port.
• The IP address of any hostname or domain attribute is searched

using the Python socket module and included as an additional IP
attribute if found.

• The attribute timestamp is rounded to the nearest hour to increase
multiplicity.

• The natural language attributes (text, and comment) are pro-
cessed. Any non-alpha character is removed, the text is converted
to lowercase, and any non-noun word is removed using the
Python Spacy module.

• The labels of attack type description are slightly cleaned for the
purposes of grouping and readability: each description is stripped
down to a base word so that entries describing the same attack
type are grouped.

• Non-reoccurring labels are grouped into ‘other’.

B.2. ML algorithms

Following we describes the algorithms considered as the most com-
mon and effective ML classifier.

Decision Tree (DT): The decision tree classifier splits the data into
a series of branching nodes that end in leaves. The nodes represent a
rule, e.g., a data point is red, and the leaves are a classification. Trees
are fast to learn and thus applied to a very wide range of problems.

Random Forest (RF): The random forest classifier uses a multitude
of decision trees to create a ‘forest’. Certain trees can predict certain
classes more strongly than others, so the forest picks which trees to

use.
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Table A.11
MISP attributes and their description used in the PoC.

Name Description Extraction Example

event The title of the MISP event. A short natural
language description of event.

The MISP ‘Event’ feature. Trojanized Adobe Installer used
to Install DragonOK, New Custom
Backdoor

threat level A number between 1 to 3 assigned to indicate the
threat level with 3 being the highest and 0 being
undefined.

The MISP ‘Threat Level’ feature. 1

threat type The type of threat the MISP event is about. E.g.
malware, exploit-kit, tool, threat-actor.

The ‘misp-galaxy’ tag type. E.g.
‘misp-galaxy:tool=KHRAT’. Otherwise the
‘classification’ tag value.

malware

name The name of the threat that the MISP event is
about

The value of the ‘misp-galaxy’ tag. KHRAT

date The reference date of the MISP event. The MISP ‘date’ feature. 2017-03-29

timestamp The creation time of the individual MISP attribute.
Expressed in Unix time.

The MISP ‘timestamp’ feature. 1490818721

ip dst The destination IP of the IOC. The victim’s IP. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘ip-dst’ or ‘ip-port’.

23.229.221.200

ip src The source IP of the IOC. The attacker’s IP. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘ip-src’. Also taken from IP address lookup
of domain feature (below).

208.91.197.46

port The port on which IOC was recorded. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘ip-port’.

40

domain The domain of the IOC. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘domain’, ‘hostname’ or ‘url’. Also extracted
from a domain name lookup of the ip-src feature.

cookie.inter-ctrip.com

file hash The encrypted value of a file based IOC. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘sha1’, ‘sha256’ or ‘md5’.

ffc0ebad7c1888cc4
a3f5cd86a5942014
b9e15a833e57561
4cd01a0bb6f5de2e

filename The filename of the IOC. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘filename’.

Byebye.dll

description A natural language description of the MISP event. The MISP ‘value’ feature if the MISP ‘type’ feature
equals ‘comment’ or ‘text’

Since January of this year ... ... ...
which pertained to Cambodia’s
country code.

comment A short natural language comment providing some
context to the IOC.

The MISP ‘comment’ feature. Sample malicious URL hosting
location
Table A.12
Most common attributes of the MISP OSINT feed as of Jan. 2019.
Attribute Number Percentage

Hostname 41135 19.2
md5 29085 13.6
Domain 25382 11.9
sha256 22525 10.5
ip-dst 16582 7.8
sha1 15726 7.4
link 13908 6.5
url 10036 4.7
filename | sha256 8840 4.1
ip-src 7417 3.5
file 5324 2.5
text 905 0.4
comment 371 0.2

K-Nearest Neighbours (KNN): K-nearest neighbours is another
ery simple but effective classifier. The classification of the data points
s made based on the K most similar instances (or neighbours) of the
ata point. To do that searching is made on the entire training set to
ind the k most similar instances.
Support Vector Machine (SVM): Support vector machine separates

features into an n-dimensional space, and attempts to identify the
ptimal hyperplane between them. The points surrounding the border
f a feature are called support vectors which define the hyperplane.
VM is considered one of the most powerful ‘out-of-the-box’ classifiers.
Multi-Layer Perceptron (MLP): Multi-Layer Perceptron models use
18

feed-forward Artificial Neural Network (ANN). It has three layers of
nodes: the input layer, a hidden layer and an output layer. Each node
is considered as a neuron that uses a nonlinear activation function.
Even though MLP is considered as a simplistic deep learning model,
the computation of MLP is quite expensive.

Ridge Classifier (RID): Ridge regression is a regression model that
aims to alleviate the problems of multi-collinearity and overfitting that
other regression models may have. Multi-collinearity is the existence
of near-linear relationships amongst the independent variables that can
distort the results.

Naïve Bayes (BAY): Naïve Bayes classifiers use the Bayes theorem
to predict the probability of a value to be in a class. Various distribution
and statistical features are used with the classifier to build the model.
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