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Abstract—The use of learning-based techniques to achieve
automated software vulnerability detection has been of long-
standing interest within the software security domain. These
data-driven solutions are enabled by large software vulnerability
datasets used for training and benchmarking. However, we
observe that the quality of the data powering these solutions
is currently ill-considered, hindering the reliability and value of
produced outcomes. Whilst awareness of software vulnerability
data preparation challenges is growing, there has been little
investigation into the potential negative impacts of software
vulnerability data quality. For instance, we lack confirmation that
vulnerability labels are correct or consistent. Our study seeks
to address such shortcomings by inspecting five inherent data
quality attributes for four state-of-the-art software vulnerability
datasets and the subsequent impacts that issues can have on
software vulnerability prediction models. Surprisingly, we found
that all the analyzed datasets exhibit some data quality problems.
In particular, we found 20-71% of vulnerability labels to be
inaccurate in real-world datasets, and 17-99% of data points were
duplicated. We observed that these issues could cause significant
impacts on downstream models, either preventing effective model
training or inflating benchmark performance. We advocate for
the need to overcome such challenges. Our findings will enable
better consideration and assessment of software vulnerability
data quality in the future.

Index Terms—software vulnerability, data quality, machine
learning

I. INTRODUCTION

Software vulnerability detection is a vital task for achieving
secure software systems [1]. However, traditional techniques
for detecting vulnerabilities (e.g., rule-based methods) struggle
in terms of scalability and false positive rates [2]. Hence,
many researchers have been motivated to leverage the technical
advancements of Artificial Intelligence (AI) and Machine
Learning (ML) to support automatic software vulnerability
detection [3]. Recent studies have reported great success in this
direction [4]–[8], with performance that surpasses traditional
approaches [9]. We refer to these learning-based techniques as
Software Vulnerability Prediction (SVP). Like any data-driven
task, SVP is highly data-dependent. In order to learn complex
features of vulnerabilities, we require large code datasets that
have been labelled as either vulnerable or non-vulnerable.

Nonetheless, software vulnerability data collection is not a
trivial task [10]. Labelled examples of software vulnerabilities
are difficult to obtain in the real-world, as they are scarce
[11], poorly documented [12], and limited to reported vulner-
abilities [13]. Consequently, many researchers have conducted
labourious work constructing large-scale software vulnera-
bility datasets [14]–[17]. However, we found that relatively
little counterpart work has been conducted to understand

the software vulnerability data quality. Whilst data quantity
is important, an effective machine learning system requires
adequate data quality [18]. Despite the increasing realisation of
software vulnerability data preparation challenges [10], there
has been relatively little effort made to provide a systematic
understanding of how these challenges can potentially impact
data quality, and subsequently affect the reliability of down-
stream software vulnerability analysis.

A lack of understanding of data quality leads to critical
barriers to advance software assurance against vulnerabilities.
Data quality is an integral component of any data-driven
system: garbage in, garbage out [19]. Certain data biases or
misinformation can make benchmark performance results mis-
leading [20]–[22]. This can cause models to fail to generalise
to real-world scenarios [17], [23], [24], if they have not been
trained with fair and realistic data.

Thus, we set out to understand the nature of data quality for
software vulnerability datasets. To achieve this, we focused
on inherent data quality attributes that are intrinsic to the
data itself. Table I presents the five data quality attributes that
we systematically analyse: accuracy, uniqueness, consistency,
completeness, and currentness. For each attribute, we provide
a measurement of its prevalence in existing datasets and
analysis into the causes of observed issues. Our findings
revealed that even state-of-the-art datasets exhibit considerable
data quality challenges. As expected, we found these issues
to cause significant negative impacts on both training and
benchmarking of state-of-the-art SVP models. Our findings
have substantial implications:

• Data quality issues may constrain the patterns able to be
learnt by SVP models. We found that real-world datasets
can face substantial issues for label correctness of the
vulnerable class. Approximately 20-71% of vulnerability
labels were inaccurate. Furthermore, up to 47% of labels
were inconsistent. These issues cause models to learn
false or insufficient patterns.

• Software vulnerability benchmark datasets may lead to
inflated performance. A few datasets exhibited large data
duplication rates, between 17-99%. Hence, data leakage
causes models to report inflated performance using stan-
dard test setups. Evaluation performance decreased by up
to 82% after removing such duplicates.

To achieve the most reliable results from learning-based
software vulnerability analytics, we must consider and address
the issue of data quality. Whilst some of the observed quality
issues can be solved easily through rule-based detection and



TABLE I
INHERENT DATA QUALITY ATTRIBUTES DEFINED BY ISO/IEC 25012 [25].

Attribute Definition Interpretation
Accuracy The degree to which the data has attributes that correctly represent the true value of the intended attribute of a

concept or event.
Correct labelling.

Uniqueness The degree to which there is no duplication in records. No duplicate values.
Consistency The degree to which data has attributes that are free from contradiction and are coherent with other data. Consistent labelling.
Completeness The degree to which subject data associated with an entity has values for all expected attributes and related instances. No missing values.
Currentness The degree to which data has attributes that are of the right age. Not obsolete data.

removal, others cannot be remediated in this manner. As a
community, we must focus on developing knowledge and tools
for constructing high quality software vulnerability datasets.
Our contributions are twofold:

1) We provide understanding of the nature and causes of
observed data quality issues in software vulnerability
datasets. We also demonstrate the corresponding impact
of these issues for software vulnerability prediction. Such
investigation highlights the problem of data quality and
the need to mitigate these challenges. Furthermore, our
insights help overcome data quality issues, for which we
have provided directions in the discussion.

2) We propose and conduct methods for measurement of
data quality for software vulnerability datasets. These
efforts can enable practitioners to consider and perform
data quality assessment. We have provided a reproduction
package of this study to assist with such efforts [26].

II. BACKGROUND AND MOTIVATION

A. Software Vulnerability Data Preparation

Software Vulnerability Prediction (SVP) models use pro-
gram analysis techniques to learn software vulnerability pat-
terns automatically from historical examples [27], [28]. Due to
the unstructured nature of source code, researchers have found
the most success using Deep Learning (DL) techniques that
learn from program syntax and semantics [3], [7], [8], [24].

Hence, SVP is a data-hungry process [16]: the models
require a large training dataset of annotated code modules,
labelled as vulnerable or non-vulnerable. However, acquiring
a reliable vulnerability label source is a non-trivial task; there
is no oracle that can unfailingly prove the existence or absence
of vulnerabilities from a codebase [29]. Thus, researchers have
relied on a variety of label sources to account for different
shortcomings. Following prior analysis [10], [24], we outline
four main label categories:

• Security Vendor Provided. Security vendors maintain
vulnerability databases that aggregate information from
various advisories. This provides a standardised collec-
tion of disclosed vulnerabilities. Examples include the
National Vulnerability Database (NVD) [30], or the Snyk
Vulnerability Database [31]. Vulnerability records often
provide links to patches, which can then be traced to
identify real-world source code and vulnerabilities.

• Developer Provided. Vulnerability databases may not
properly document all vulnerabilities of a project [32].

Hence, researchers may collect vulnerability fixing com-
mits directly from developers via the development history
or via a project’s issue tracking systems. However, this
method requires additional effort to search development
artefacts for security-related defects.

• Tool Created. Developer or security vendor-provided la-
bels have a major limitation of only collecting reported
vulnerabilities, which severely limits the number of ex-
amples that can be collected. In reality, vulnerabilities can
remain latent or undetected [33], which limits the dataset
size and adds considerable label noise to the modules.
To circumvent this, some researchers have utilised static
security analysis tools to automatically produce labels
for the source code [16], [34], [35]. This process relies
heavily on the accuracy of the static analyser used, which
is a source of contention [15].

• Synthetically Created. Finally, to bypass the limitations
of other label sources, vulnerable code examples and
annotations can be created artificially from known vul-
nerable patterns. Synthetically producing entries ensures
label correctness at the cost of source code diversity [24].

Despite these caveats, researchers have faced data prepa-
ration challenges regardless of the selected dataset [10].
Whilst state-of-the-art SVP models report good performance
on benchmark datasets, performance only measures the ability
of a model to fit a particular dataset. A good performance
value does not guarantee that a model will generalise to
real-world scenarios [36]. Hence, data quality issues will
hinder the reliability and trustworthiness of the outcomes. For
instance, previous studies [13], [33] have highlighted inflated
performance due to inaccurate labelling mechanisms for non-
vulnerable modules. Consequently, the industry value and
adoption of SVP models is uncertain [37], [38]. Our study
seeks to shed light on the state of software vulnerability data
quality so that we better understand the reliability and trust-
worthiness of the reported outcomes that use these datasets.

B. Data Quality in Software Engineering Research

Training data is an integral component of ML systems that
heavily influences the produced models. Unlike conventional
software systems, ML systems exhibit both system and data
requirements [18]. As a result, data quality is becoming
an essential component of AI-based Software Engineering
research [39]. Software engineering data and artefacts are
often noisy as they are usually collected post-hoc via mining
software repositories [40]. The data and labels are not gener-



ated explicitly for the purposes of research. Hence, software
engineering data has been found to exhibit issues with data
accuracy, relevance, and provenance [40].

Existing studies that investigate data quality characteristics
of software engineering datasets are currently non-systematic
and limited. Data quality can be defined by a large range of
dimensions, like those defined in Table I. Existing studies often
limit their analysis to semantic or syntactic data accuracy and
noise [22], [41]–[45]. Similarly, Jimenez et al. [33] considered
label accuracy within software vulnerability datasets. However,
this approach fails to provide a complete picture. To make
informed data decisions, there is a need for a systematised
and objective investigation of data quality in the software
engineering domain. Croft et al. [10] conducted a systematic
literature review of the data quality issues considered by SVP
researchers. Whilst this work provides a systematised view,
the observations are unsubstantiated with respect to actual
software vulnerability datasets and SVP models. Our work
purports to perform quantitative analysis of data quality within
software vulnerability datasets and explicitly show its impacts
on SVP models.

Additionally, researchers have recently begun constructing
automated cleaning frameworks to reduce the observed data
noise issues and ensure correctness [22], [45]. These frame-
works are grounded in a deep understanding of the data quality
issues afflicting the relevant datasets. We expect the findings
obtained in our study to enable the creation of a cleaning
framework for software vulnerability datasets.

III. STUDY DESIGN

To understand the data quality of the state-of-the-art soft-
ware vulnerability datasets, we address two Research Ques-
tions (RQs) through the analysis of several data quality
attributes. Figure 1 displays the overall workflow used to
conduct this study. We describe each of the three processes
in Sections III-B, III-C and III-D, respectively.

A. Research Questions

Our investigation is guided by the following RQs:
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Data Quality
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Artefacts

SVP Models

SV Datasets
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Analysis
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Fig. 1. The overall study design.

• RQ1: What data quality issues are present in the state-
of-the-art software vulnerability datasets? We firstly
aim to inform practitioners of the state and nature of data
quality for software vulnerability datasets.

• RQ2: To what extent do data quality issues impact
downstream software vulnerability prediction models?
Our second aim is to verify the importance of data qual-
ity. We attempt to demonstrate the potentially negative
impact that observed data quality issues can have on the
downstream tasks for software vulnerability prediction.

B. Identifying Data Quality Attributes

The lack of existing data quality consideration for software
vulnerability datasets has perhaps been caused by the lack of
systematic definitions for data quality and hence measurement.
It is not easy to define data quality, due to its many dimensions
[46]. Not all dimensions may be relevant to a specific scenario
[47], and different organisations would value quality attributes
differently [18]. For instance, not all organisations would
prioritise data confidentiality. There are two main categories
of data quality attributes [25]: inherent data quality, which
intrinsically relates to the data itself, or system-dependent
data quality, which extrinsically arises from external fac-
tors and requirements. For this study, we focused on purely
inherent data quality attributes, as SVP models have not
yet achieved widespread industrial application [37]. System-
dependent attributes cannot be properly measured without
an associated deployment context. In this sense, we focused
on the data rather than how the data is used. Hence, our
findings are not constrained to particular modelling techniques
or features.

To identify inherent data quality attributes, we used the
standardised data quality framework ISO/IEC 25012 [25].
This framework has been used for data quality assessment
in both the Software Engineering [47] and Machine Learning
[18], [48] domains. ISO/IEC 25012 outlines five inherent data
quality attributes: Accuracy, Consistency, Completeness, Cur-
rentness, and Credibility. We excluded the credibility attribute
as it is difficult to quantify in existing software vulnerability
datasets. Credibility indicates the level of trust that we have
in a dataset; the authenticity of the data source or supplier. We
need to ensure that our data points are free from contamination
or fake information [36]. As datasets have been produced by
peer-reviewed research or respected government organisations
[10], we assume a level of trust in the data source and supplier
of each dataset. Additionally, we considered a uniqueness
data dimension, due to its prevalence in existing software
engineering research [49], and its importance as highlighted
by previous SVP researchers [24]. Table I summarises the
selected inherent data quality attributes for analysis.

C. Measuring Attributes

For the analysis, we collected one dataset of each label
source described in Section II-A. To ensure the collected
datasets represented the state-of-the-art appropriately, we con-
sidered datasets that were created or used by a conference or



TABLE II
SELECTED STATE-OF-THE-ART DATASETS FOR EXAMINATION.

Dataset Label source # Functions % Vul
Big-Vul [14] Security vendor provided 188,636 5.78
Devign [15] Developer provided 27,318 45.61
D2A [16] Tool created 1,295,623 1.44
Juliet [50] Synthetically created 253,002 36.77

journal paper published in a high quality venue, as indicated
by a CORE1 ranking of A or A*. New datasets continue to be
published in order to improve on previous dataset shortcom-
ings. We selected the most recently published datasets as of
March 2022. We also chose datasets that contained appropriate
metadata about how the labels were obtained. Table II displays
our selected datasets. All four of the examined datasets provide
source code for C/C++ functions.

• Big-Vul [14] scraped software versions prior to a vulner-
ability fix through linked patches from the CVE Details
database. Functions with lines changed in a patch were
labelled as vulnerable. All remaining functions in a file
touched by a commit were labelled as non-vulnerable.

• Devign [15] used a similar data collection method by
scraping vulnerability fixes directly from GitHub com-
mits. A keyword approach was used to separate vul-
nerability and non-vulnerability related commits. The
vulnerability-related commits were then filtered manually
to ensure accuracy. All relevant functions of each commit
were collected for their respective classes.

• D2A [16] collected source code by running a static anal-
ysis tool on project versions before and after bug fixing
commits of six open source repositories. The vulnerable
class was formed from tool warnings that disappeared in
the post-fix version. The non-vulnerable class consists of
the remaining tool warnings. Each data entry indicates
a function containing the original vulnerability location.
We retrieved all such functions to form the D2A dataset.

• Juliet [50] contains synthetically generated examples of
programs demonstrating a variety of known vulnera-
ble code patterns. Programs are generated automatically,
based on pre-defined augmentation rules. Each program
contains a vulnerable version and non-vulnerable version.
Juliet was originally created to test static and dynamic
security tools, but it has also been used for training SVP
models. Source code data is provided in files with func-
tions being annotated as vulnerable or not. We retrieved
all functions from each annotated section of the data.

We followed the measurement practices specified by Naka-
jima and Nakatani [48] for using the ISO/IEC 25012 frame-
work with respect to AI training data requirements. Table I
describes the interpretation of each attribute. We identified the
percentage of samples in a dataset that satisfy the relevant
characteristics to produce an overall measurement. Hence,
the measurement value for each attribute lies between 0 and
1, with 1 indicating no data quality issues are present. We

1http://portal.core.edu.au/conf-ranks/, http://portal.core.edu.au/jnl-ranks/

formally define this measurement in Equation 1, where N
denotes the number of samples in a dataset and dq(i) returns
1 if a data entry i satisfies the relevant characteristic. Further
details of the measurements for each individual attribute are
provided later in Section IV.

Attribute =

N∑
i=1

dq(i)

N
(1)

D. Validating Attribute Impact

Finally, to validate the impact of the observed data quality
issues, we investigated the performance impacts on a state-of-
the-art SVP model. Depending on the observed data quality
issues, we either measured the performance change on a
retrained model after mitigating data quality issues or altered
the test setup to highlight the data quality characteristic of
focus. We provide further details in Section IV.

For the benchmark performance, we trained a model on each
dataset, without any pre-processing of the data. However, we
removed inconsistent entries for the D2A benchmark, as we
were otherwise unable to produce an effective classifier for
this dataset. We ran all experiments five times using random
80:10:10 training/validation/test splits unless otherwise speci-
fied, as this is a standard test setup in prior research [6]–[8].

We selected the LineVul SVP model [7], as it is a re-
cently published model that has been shown to outperform
all previous baselines for both function level and line level
predictions. LineVul [7] relies on CodeBERT [51] to obtain
code feature representations that capture lexical and logical
semantics. CodeBERT is a pre-trained state-of-the-art code
embedding model based on the RoBERTa architecture [52].
Similar studies have demonstrated the effectiveness of Code-
BERT for SVP [8], [13]. LineVul generates function-level
predictions using a transformer-based architecture. Although
LineVul also has the capability to localise its predictions to
the line-level after performing the function-level prediction,
all of the selected datasets provide labels at the function-level.
Hence, we perform prediction at the function-level granularity.

We evaluated model performance using Recall, Precision
and Matthews Correlation Coefficient (MCC). We opted to
use MCC as an overall indicator of performance, as its use
has been recommended for similar tasks [53]. MCC values
range between -1 and 1, with 1 being the optimal value.

IV. DATA QUALITY ANALYSIS

Table III displays the attribute values for each dataset.

A. Accuracy

Rationale. Accuracy defines the correctness of the data
points that comprise a dataset. This largely relates to the
semantic label correctness; i.e., whether or not data points
labelled as vulnerable or non-vulnerable genuinely align. It
has previously been observed that non-vulnerable labels are
unreliable in real-world datasets as there is no ground truth
label source for this class [10], [13], [33]. No oracle can
reliably ensure the security and absence of exploits in a

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/jnl-ranks/


TABLE III
MEASURED VALUE OF EACH ATTRIBUTE FOR EACH DATASET.

Attribute
Dataset Big-Vul Devign D2A Juliet

Accuracy* 0.543 0.800 0.286 1.000
Uniqueness 0.830 0.899 0.021 0.163
Consistency 0.999 0.991 0.531 0.750

Completeness 0.824 0.944 0.981 1.000
Currentness 0.761 0.811 0.844 -

* Based on a sample of the data.

given code snippet. Hence, non-vulnerable labels are usually
collected simply through the absence of a vulnerable label.
Thus, our analysis was constrained to the vulnerable label
source. We focused our investigation on label correctness of
data points labelled as vulnerable.

Analysis. We determined if a label is correct via manual
analysis with respect to each dataset’s labelling mechanism:
whether a vulnerability accurately represents the vulnerability
report or static analysis tool warning that it was derived from.
In this sense, we did not verify whether a vulnerability was
actually exploitable, but rather whether a code snippet is
functionally relevant to the reported vulnerability of each label.
The following steps were taken to assess the label correctness
of each entry:

1) We first extracted information relating to the vulnerability
and fixing commit of each dataset. All datasets provided a
git fixing commit ID except Juliet. Big-Vul also provided
CVE-IDs and D2A contained the static analysis tool trace.

2) We read the fixing commit description and other available
information (i.e., the vulnerability description from NVD
for Big-Vul and the static tool trace for D2A) to gain an
understanding of the vulnerability and the fixing commit
changes.

3) We then examined the changed lines in the fixing commit
for the relevant function, as well as the entire function’s
code to understand the context of the changed lines.
Based on this code comprehension, we made an assess-
ment as to whether the changed lines were functionally
relevant to the information from the previous step.

4) If we did not interpret them as functionally relevant, we
examined all the fixing commit changes to identify where
the root changes were to understand why the flagged
function was not relevant.

5) Afterwards, the authors discussed the labels that were in
disagreement and reached a consensus.

To facilitate our manual review, we examined 70 random
samples of each dataset (90% confidence level +/- 10% [54]).
Two of the authors of this paper conducted this manual
analysis independently; each of them had two to five years of
software security-related experience gained in academia and
industry. The two raters achieved a Cohen Kappa value of
0.627 [55], which implies moderate to strong agreement.

Our findings revealed that label inaccuracy occurred within
the real-world datasets. We obtained accuracy values of 0.8
(Devign), 0.543 (Big-Vul), and 0.286 (D2A). We found no

TABLE IV
TYPES OF LABEL INACCURACY IN REAL-WORLD DATASETS.

Dataset Irrelevant Cleanup Inaccurate
Big-Vul 25% 28.1% 46.9%
Devign 42.9% 21.4% 35.7%
D2A 0 0 100%

inaccuracies within the synthetic Juliet dataset, as the vulner-
able cases are crafted specifically for the label rather than
collected post-hoc. Real-world labelling works by tracing a
vulnerability identifier (usually a vulnerability fix or warning)
to the original code snippet. The two authors who conducted
the manual labelling noted their reasoning behind a label being
correct or incorrect. We conducted a thematic analysis [56] of
the label reasoning to identify the causes of dataset inaccuracy.
Table IV displays the proportion of each theme.

• Irrelevant code changes. The real-world datasets largely
assume that code touched by a vulnerability fix is vulner-
able code. However, a vulnerability fixing commit may
not necessarily provide a patch alone. Non-functional
changes, such as style changes, refactoring and code
migration can confuse the data labelling process. For
instance, this example fixing line2 simply converts a
constant value to the equivalent macro. Similarly, tan-
gled commits can implement other irrelevant changes in
parallel [57], which will be misinterpreted as vulnerable
code.

• Cleanup changes. Vulnerability fixes can sometimes
be large and disparate due to the complexity of code.
Tertiary changes can be made in a commit to help better
facilitate a vulnerability fix, such as adding, deleting or
altering variables, functions or parameters. For example,
in this fixing commit3 example a vulnerability occurs
for when read_only is set as True rather than a
protected memory object. The cleanup change converts
False read_only values to a nullptr, simply to
avoid confusion. These are functional changes that relate
to the vulnerability fix, so we do not consider them as
irrelevant. Nonetheless, they do not indicate the location
of the underlying exploitable code, and hence produce
false positive labels. We call these cleanup changes,
although they have also been referred to as casualty
changes by Sejfia et al. [58].

• Inaccurate vulnerability fix identification. If the la-
belling mechanism fails to identify a vulnerability fix, the
subsequent code snippet will naturally not be a vulnera-
bility. Datasets like Big-Vul that trace vulnerability fixes
from external vulnerability reports can introduce errors
into this process. For instance, we found the majority
of vulnerability reports for the Chromium project to be
improperly traced as this repository is not naturally hosted
via GitHub. Furthermore, datasets that attempt to identify
vulnerability fixes directly from commit history (Devign

2https://github.com/FFmpeg/FFmpeg/commit/8b2fce0d3f5a56c40c28899c9237210ca8f9cf75
3https://github.com/chromium/chromium/commit/673ce95d481ea9368c4d4d43ac756ba1d6d9e608

https://github.com/FFmpeg/FFmpeg/commit/8b2fce0d3f5a56c40c28899c9237210ca8f9cf75#diff-73395d3a1e02aad201d2af860c5bf0fc9cb6a68c9c711ff226eeb24ea0d409a5L400
https://github.com/chromium/chromium/commit/673ce95d481ea9368c4d4d43ac756ba1d6d9e608#diff-7f736fbfd346ea57bfcaa50d2dd642f5ef5e043625524affd878d1163e148c3eL139-L141


and D2A) can also be rife with errors. Researchers
usually attempt to identify these commits through inac-
curate and unreliable keyword matching methods. Lastly,
D2A uses additional help from static analysis tools to
identify vulnerability fixes. These tools produce many
false positive vulnerability warnings.

Mainly, we observed tangled commits to cause problems
for current real-world data labelling heuristics [57]. Current
datasets assume vulnerable code to be all code touched in
a vulnerability fix, but commits are messy in practice [59].
Similarly, vague, generic or unclear commit messages can
make vulnerability fix identification difficult [12]. In contrast,
correct vulnerability labels typically stem from simple, focused
and well-defined vulnerability fixing commits.

Additionally, the datasets included samples for which we
found it difficult to verify or agree upon the label. This
often occurred when the location of a vulnerability falls in
a grey area. For instance, should the caller of a vulnerable
code snippet also be labelled as such? Herbold et al. [60]
encountered similar problems in their investigation of tangled
commits. Alternatively, the label source may not contain
enough information in the bug report to properly trace it.
We tentatively labeled these ambiguous cases as correct.
However, the software security domain should work towards
clear definitions that prevent such ambiguous cases, to help
with ensuring label correctness.

Devign did not exhibit as many issues, as it is the only
dataset for which the creators attempted to perform manual
validation of the fixing commits. However, this accuracy as-
surance comes at the cost of data size. Devign is the smallest of
the datasets, due to the strenuous efforts of manual validation.
Nonetheless, Devign still exhibits some inaccuracies. The
majority of the errors came from irrelevant changes, such as
refactoring or code migration, which may imply the original
authors did not check for such things.

The accuracy for Big-Vul was lower, as many of the
vulnerability fixing commits used during data extraction for
this dataset were large, tangled or noisy. Most errors arose
from inaccuracies in tracing the fixing commits, particularly
for the Chromium project. 36% of the vulnerable entries in
Big-Vul are from the Chromium project.

Over two-thirds of the D2A labels were inaccurate. We
found that this was primarily due to the static analysis tool
warnings being unreliable, as well as the vulnerability commit
identifier being inaccurate. The majority of commits flagged
by the D2A data extractor were not actually vulnerability
fixes, as the context of the security-specific words was often
misinterpreted. For instance, not all commits that contained
the word “memory” were necessarily fixing unsafe memory
operations. The majority of static tool warnings were also false
positives. Static analysis tools often output an indication of the
reliability of a warning, based on how confident the tool is. For
example, a confident integer overflow warning would know the
integer data type and variable values, whereas an unreliable
report may know neither. Over 97% of the static analysis
warnings included in D2A are from the lowest reliability

warning class, making them often inaccurate. However, as
the static analysis tools attempt to infer the location of the
vulnerability directly, there were no false positives caused by
irrelevant or cleanup code changes.

Impact. To evaluate the impact of inaccurate labels, we
retrained each model using our manually-validated samples of
each dataset as a separate holdout test set. We measured model
performance when using the original labels in comparison
with the manually-corrected labels. We could not measure
MCC as the test set had no samples that were originally
labelled as non-vulnerable. The precision decreased by 29%,
50% and 80% for Devign, Big-Vul and D2A, respectively,
which we confirmed to be significant using a Mann-Whitney
U test [61] (p < 0.05). This was because incorrect vulnerable
labels caused the models to infer incorrect patterns for this
class. The models were taught vulnerable patterns that were
actually non-vulnerable. Hence, in terms of model evaluation,
what were previously considered true positives became false
positives. Correspondingly, we found that the model recall
was not significantly affected (using a Mann-Whitney U test
[61]) as we only uncovered label inaccuracy for the vulnerable
class; the number of false negatives was unchanged. These
impacts are still significant however, as they can lead to high
false positive rates in models which would greatly increase
inspection efforts during practical use.

Accuracy is limited for some real-world datasets due to
their reliance on noisy and hard-to-identify vulnerability
fixing commits. Accuracy issues cause SVP models to infer
the wrong patterns between classes.

B. Uniqueness

Rationale. Uniqueness is not necessarily an intrinsic data
property, as a real-world data distribution may contain dupli-
cated samples. However, code duplication has been demon-
strated to have adverse effects on trained models [49]. Dupli-
cates can introduce bias in a model towards certain samples.
Inflated performance values can result when duplication occurs
between the training and test sets [24]. Hence, ensuring
uniqueness of samples within a dataset helps models generalise
towards a true data distribution [62]. Consequently, we treat it
as an inherent attribute and decided to investigate the impacts
that a lack of uniqueness would have for SVP.

Similar or identical code fragments are defined as code
clones [63], of which there are four main types [64]:

1) Type-1: Identical code fragments, except for differences
in white-space, layout and comments.

2) Type-2: Identical code fragments, except for differences
in identifier names and literal values, in addition to Type-
1 clone differences.

3) Type-3: Syntactically similar code fragments that differ at
the statement level. The fragments have statements added,
modified and/or removed with respect to each other, in
addition to Type-1 and Type-2 clone differences.

4) Type-4: Syntactically dissimilar code fragments that im-
plement the same functionality.



We followed standard practices and considered type-3 code
clones as duplicates [49]. Even functionally similar code
fragments will include duplicated patterns and tokens that
can adversely affect the model performance and evaluation.
However, for software vulnerability datasets, slight functional
changes can form the difference between a vulnerable and
non-vulnerable label. A typical vulnerability fix only alters a
few lines of code [65]. It is important that a model is able
to capture these slight functional differences across prediction
classes to avoid excessive false positive or false negative rates
[24]. Hence, we only considered duplicates with the same
labels (vulnerable or non-vulnerable) as code clones.

Analysis. An entry is not unique if it is a code clone of
any other entry of the same label. To identify code clones, we
reused the code duplicate detector tool produced by Allamanis
[49]. We lowered the minimum token count of a sample to
five, as functions are smaller than the files for which this tool
was originally built. This tool outputs clusters of duplicates,
as there can be more than one duplicate per function.

We observed code duplication to occur within all the
datasets, but less frequently for the Big-Vul and Devign
datasets. We obtained a uniqueness value of 0.830 (Big-Vul),
0.899 (Devign), 0.021 (D2A), and 0.163 (Juliet). We manually
examined a sample of 30 random duplicate clusters for each
dataset (74 functions for Big-Vul, 79 functions for Devign, 210
functions for Juliet, 2288 functions for D2A) to understand
why duplicate code entries are present. Using thematic analysis
[56], we observed three main causes of code duplication in
real-world datasets:

• Updated code. All real-world datasets collect code from
multiple versions of the same code repository in order to
maximise the number of vulnerabilities observed. Across
the versions, subtle functional or non-functional updates
to the code introduce predominantly duplicated code
snippets. For vulnerable cases, these types of duplicates
can imply that the code update either failed to fix the
vulnerability or introduced a new one.

• Similar function sets. A code file may contain a suite
of simple modular functions. These functions are often
identical in terms of variable names, logic, and layout
but have slight functional differences. For example, two
functions may be implemented to start and stop a process
respectively, or a set of functions may each perform a
unique mathematical operation on a data flow.

• Renamed functions. Identical functions may be dupli-
cated and renamed for use in different files and contexts.

We illustrate these causes in Figure 2. These factors are
inherent in source code datasets due to both the spatial and
temporal repetitiveness of code in software repositories.

We found duplication to be especially significant for D2A.
Each unique function in the dataset had an average of 57
duplicates. This is because D2A produces label information
at the line level, which is then abstracted to the function
scope. The same function can be included multiple times if
unique lines are flagged. Hence, the D2A labelling process
introduces many additional exact duplicates. Over 94% of the

+ func view_obj2() 
+ func view_obj1() 

+ func add_fileY_var() 
File Y

+ func do_operation_X() 

+ func add_fileX_var() 

File X

COMMIT 1

+ func do_operation_X() 
File X

COMMIT 2

= Updated Function
= Renamed Functions
= Similar Function Sets

Fig. 2. An example of the three main code duplicate causes.

TABLE V
PERFORMANCE IMPACT OF UNIQUENESS ISSUES.

Dataset With Duplication Without duplication Change
Precision Recall MCC Precision Recall MCC (MCC)

Big-Vul 0.920 0.765 0.830 0.922 0.762 0.829 0.0% ↓
Devign 0.680 0.428 0.284 0.651 0.399 0.244 13.9% ↓
D2A 0.961 0.630 0.774 0.741 0.049 0.141 81.7% ↓
Juliet 0.939 0.945 0.909 0.962 0.799 0.814 10.4% ↓

D2A dataset were type-1 code clones. Furthermore, two of
the six repositories that comprise D2A are forks of each other
(FFmpeg and Libav), which led to further duplication. The
lack of uniqueness for D2A questions the claim of the dataset’s
size; there is limited information at the function level for this
dataset.

We also found a large number of duplicates in Juliet, due to
the subtlety in the variance of the test cases. New test cases are
produced by making slight changes to the control flow logic,
internal function calls, or literal values. Furthermore, the non-
vulnerable fixed statements can exhibit exact duplication due
to having a constant corrected implementation.

Impact. For SVP, duplicates can appear in the training
set, test set, or across these two sets. Figure 3 illustrates
these duplicate types. In-train duplicates may produce model
biases [62], but it is hard to measure these aspects via model
performance [49]. We focus our analysis on the impact of
uniqueness for model evaluation. We split each dataset into a
training, validation and test set, as specified in Section III-D.
We then compared the evaluation performance of the model
when cross-set duplicates to the test set were either removed
or kept. Allamanis [49] found cross-set duplication to be the
most significant type in software engineering research.

Table V displays the performance change for SVP models
when we removed the identified duplicate entries. We observed

Train Set

Test Set

Cross-Set
DuplicatesIn-Train 

Duplicates

In-Test
Duplicates

Fig. 3. Types of duplicates for ML models, adapted from Allamanis [49].



that cross-set duplication is a significant factor for some
datasets as the overall evaluation results (MCC) decreased
for Devign, D2A and Juliet, which we confirmed to be
significant using a Mann-Whitney U test [61] (p < 0.05). The
model trained with Big-Vul data was not significantly affected.
This implies that a lack of uniqueness may not always be
problematic.

Duplicates can allow for data leakage in the evaluation setup
[49]; the models can trivially classify samples in the test set
that are also duplicated in the training set, inflating the true
performance. We observed that duplication had a larger neg-
ative influence on recall rather than precision for all datasets.
The removal of cross-set duplicates removed trivial samples
from the test set, primarily lowering true positives. This had
a larger impact on recall, due to the higher ratio of false
negatives in comparison to false positives. Recall significantly
decreased for Devign (7% decrease), D2A (92% decrease)
and Juliet (15% decrease) (confirmed using a Mann-Whitney
U test [61]), whereas precision actually even increased after
duplicate removal for Big-Vul and Juliet. However, the overall
performance (MCC) still decreased for each dataset other than
Big-Vul.

Uniqueness issues are present within all datasets due to the
repetitive and incremental nature of code. Duplicate code
snippets can potentially inflate overall evaluation perfor-
mance due to data leakage.

C. Consistency

Rationale. Consistency denotes that data entries should
not provide conflicting information. For software vulnerability
datasets, this simply implies that similar code snippets should
not have conflicting labels. A piece of code cannot be both
vulnerable and non-vulnerable. Inconsistency can arise in
software vulnerability data however, due to the multiple data
streams that are used to construct a dataset [66]. Consistency is
understandably important for model training and construction,
as conflicting labels confuse any AI-based model that is
attempting to distinguish between two classes.

Consistency is related to the uniqueness attribute as we
again examined duplicated data. However, consistency mea-
sures duplicated entries with conflicting labels. As slight
functional changes can form the functional difference between
a vulnerable and non-vulnerable code snippet, we only con-
sidered type-1 code clones (exact matches).

Analysis. An entry is consistent if it does not have any
duplicates with conflicting labels. We observed high consis-
tency values for Big-Vul (0.999) and Devign (0.991), but
lower values for D2A (0.531) and Juliet (0.75). We manually
examined a random sample of 30 inconsistent clusters to
determine reasons for inconsistent vulnerability labels. We
found that the causes of inconsistent labels were fairly unique
to each data collection approach, which we discuss below.

For Big-Vul, inconsistent labels were produced by latent
vulnerabilities that existed within the source code. The la-
belling heuristic of this dataset assumes that all functions in

Commit
1

Commit
2

Commit
3

Commit 
i

Commit
i+1

Vulnerability Introducing

Commit for func b()
Vulnerability Fixing

Commit for func a()

Vulnerability Fixing

Commit for func b()

+ func a()

  func b()

Changes
Fixed

Unchanged + func b()

Changes

Fixed

Fig. 4. An example of inconsistency introduced from latent vulnerabilities.
Function b is vulnerable in commit 3 until commit i+1, but it is only recorded
as such for the latter.

the files of a commit that were not explicitly touched are
non-vulnerable. However, these functions can actually contain
vulnerabilities unknown to developers. These vulnerabilities
can be reported and then collected at a later date. Figure 4
illustrates this process. Although the number of inconsistent
cases is relatively small, these are only the latent vulnera-
bilities we know about. In reality, complete knowledge of
the latent vulnerabilities is unobtainable. Croft et al. [13]
observed at least twice as many latent vulnerabilities as known
vulnerabilities in their dataset.

In the Devign dataset, inconsistencies occurred due to
simultaneous code branches. The vulnerability fixing commit
may only be identified in one branch, leaving the same
commits in other branches to be treated as non-vulnerable.
This primarily occurs due to merging commits on branches,
as merged commits can contain vulnerability fixes but are not
described as such. Like the inconsistent labels of Big-Vul, this
implies there are incorrect labels for the non-vulnerable class,
as the other branch commits are improperly identified.

The static analysis tools that inferred the labels of the
D2A dataset produce an excessive number of warnings. All
functions are scanned over every analysed commit during the
D2A data extraction. Hence, the same function can receive
the same warning from the static analysis tool over different
commits. If one of the commits edits the flagged lines whereas
the others do not, then inconsistent labels will be introduced.
We found this occurred commonly in practice, as demonstrated
by the relatively low consistency value of this dataset.

The Juliet test cases can include tertiary functions that
perform unsafe operations, e.g., writing data to a buffer.
Test cases are set up like this to help test the ability of
vulnerability scanning tools to track data flow across functions.
Although these tertiary functions are vulnerable as they lack
the necessary security checks, an exploit will only occur when
specific values are passed to them. As a result, duplicate copies
of these functions are contained in both the vulnerable and
non-vulnerable annotated sections of this dataset.

From the analysis, we observe that inconsistent samples
primarily point to inaccuracies within the data collection
processes for the non-vulnerable class. This is due to a lack
of proper label sources or checks for this class; it is formed
from the absence of vulnerability labels.

Impact. Like uniqueness, inconsistency can appear within



TABLE VI
PERFORMANCE IMPACT OF CONSISTENCY ISSUES, WITH COMPARISON TO ORIGINAL DATA SETUPS.

Dataset All inconsistent (original) Consistent test set Consistent train & test set
Precision Recall MCC Precision Recall MCC Precision Recall MCC

Big-Vul 0.902 0.774 0.826 0.919 (↑) 0.774 (-) 0.835 (↑) 0.915 (↑) 0.775 (↑) 0.833 (↑)
Devign 0.625 0.569 0.285 0.668 (↑) 0.500 (↓) 0.311 (↑) 0.653 (↑) 0.502 (↓) 0.289 (↑)
D2A 0 0 0 0 (-) 0 (-) 0 (-) 0.948 (↑) 0.599 (↑) 0.748 (↑)
Juliet 0.937 0.950 0.910 0.998 (↑) 0.985 (↑) 0.987 (↑) 0.999 (↑) 0.999 (↑) 0.999 (↑)

the training set, test set, or across these two sets, as depicted in
Figure 3. Training set inconsistency would affect the patterns
learnt by the model, whereas test set inconsistency would
affect model evaluation. We considered both of these aspects
in our impact analysis experiments. We removed inconsis-
tency via entries from the non-vulnerable class of inconsistent
clusters, as our manual analysis found these non-vulnerable
entries to be incorrect. Using the experimental setup described
in Section III-D, we considered three scenarios: the original
case when all inconsistent examples are retained, a consistent
test set in which all within-test and cross-set inconsistencies
are removed but the training set remains inconsistent, and an
entirely consistent dataset in which all inconsistent entries are
removed. We trained and evaluated a model for each setup.

Table VI displays the performance impact. We observed
inconsistency to potentially have an effect on model evaluation
as MCC performance increased when using consistent test
sets. This is because a model will naturally make the same
prediction for identical inputs, producing wrong predictions
for a portion of the inconsistent entries. Hence, inconsistent
samples hinder performance as the lack of distinguished labels
either prevent the models from inferring important patterns or
causes them to bias toward an incorrect class label. In the case
of D2A, inconsistency was so prevalent that the model fails to
make any correct predictions unless training with a consistent
training set. We observed the model would default predictions
to the most prevalent label of an inconsistent cluster; which is
the non-vulnerable class in the case of D2A. Using a Mann-
Whitney U test [61] (p < 0.05), we confirmed that removing
inconsistency issues significantly improved performance for
the most afflicted datasets (D2A and Juliet).

We observed that increased consistency has a larger positive
influence on precision in comparison to recall. Recall actually
even decreased when using consistent datasets for Devign
(although the overall performance still increased). This is
likely because inconsistent clusters more often produce false
positives, due to the larger number of non-vulnerable samples
in each dataset.

Performance impacts were relatively small for Big-Vul and
Devign, due to the relatively small number of affected entries.
We were unable to confirm whether the performance changes
using these datasets were statistically significant. However,
we expect that these inconsistencies actually point to larger
problems in the non-vulnerable classes of these datasets. There
is likely to be a much larger number of latent vulnerabilities
or misclassified fixing commits, but we only observe a low
number via inconsistent labels. Both Jimenez et al. [33] and

Croft et al. [13] found mislabelled latent vulnerabilities to
impact downstream SVP models significantly. Data collection
processes must be improved to ensure consistency.

Consistency issues arise due to a lack of label indicators or
checks for non-vulnerable code. Whilst measured values are
small; they may be an indicator of more significant prob-
lems. Consistency can be a significant issue that prevents
the model from learning necessary patterns.

D. Completeness

Rationale. Completeness can either refer to the complete-
ness of information within a dataset, or to the values of indi-
vidual data entries. As the former requires external reference
information, we focus on the latter as it is an inherent property
of the data. For vulnerability datasets, source code can be
missing information if the values do not contain all the code
of the original function.

Analysis. To detect missing information, we automatically
checked for incomplete code snippets by analysing the C/C++
function syntax. We found that some code entries were missing
or cut off. Overall, we observed completeness values of
0.824, 0.944, 0.981, and 1.0 for Big-Vul, Devign, D2A and
Juliet, respectively. These relatively high values imply that
completeness is less frequently problematic than the other data
quality attributes. Missing information was only present in
three of the four analyzed datasets. Table VII displays the
frequency of the truncation types present in each dataset. We
have excluded Juliet because none of its entries contained
missing information.

We found truncation at the start of functions to occur
predominantly in the Big-Vul dataset. Return types of func-
tion definitions were truncated when they were defined over
multiple lines, as function parsers commonly start on the line
containing the function name. We also found a few functions
in the Big-Vul and Devign dataset to be cut off prematurely,
missing functional lines of code. We were unable to determine
the exact cause for this truncation as we did not have access to
the scripts used to produce the datasets. We hypothesise that

TABLE VII
FREQUENCY FOR TYPES OF MISSING VALUES IN DATASETS.

Dataset Truncation Empty Declaration TotalStart End Both
Big-Vul 32,973 133 140 0 0 33,246
Devign 814 265 9 0 0 1,088
D2A 0 0 0 10,824 13,300 24,124



complexities within the source code confuse the lexicograph-
ical parser being used to extract them. For instance, many of
the early truncated samples contained additional curly brackets
(}) within literals.

D2A was resilient to truncation but it contains empty miss-
ing values, for which no code was provided. These occurred
when the static analysis tools flagged lines in a code file
outside of any containing function. Furthermore, D2A contains
13,300 single line function declarations that do not contain any
functional source code.

Impact. To see the impact of missing information on SVP
models, we set aside a common test set for each dataset
containing no incomplete entries. We then split the remaining
entries of each dataset into equal-sized halves to produce two
training sets: one containing incomplete data values and the
other without. The MCC performance marginally increased
for the complete training sets on all datasets. However, we
were unable to confirm any performance change for MCC,
precision or recall as significant using a Mann-Whitney U
test [61] (p > 0.05). Whilst the amount of information
truncated can be of arbitrary complexity, it appears to be
a relatively small part of the overall functions and occurs
relatively infrequently. However, we still advise practitioners
to ensure the completeness of software vulnerability data in
future, as more severe issues may produce larger impact.

Completeness issues can arise during data collection, but
these issues are easily solvable and do not have a high
impact as they cause relatively little missing information.

E. Currentness

Rationale. Currentness aims to ensure that datasets have
homogeneous temporal characteristics to their application con-
texts [48]. This is known in the machine learning domain
as concept drift [67]: a scenario in which the relationship
between the input data and target variable changes over time.
It is important for vulnerability datasets to stay up to date
as vulnerabilities and source code have an evolving nature
[68], [69]. We denote the date of an entry in a vulnerability
dataset as the date that the vulnerability was reported via the
dataset’s labelling mechanism. Currentness does not relate to
the synthetically created Juliet dataset.

Analysis. Currentness pertains to an entire dataset rather
than individual data points, so we selected a standard non-
contextual method for concept drift detection [67]. We used the
Jensen-Shannon divergence metric [70] to represent current-
ness, as it measures the statistical distance of the original and
current data in a dataset. The formula for this metric is reported
in [70]. For simplicity, we denoted the original and current data
as the oldest and newest half of the dataset, respectively. We
represented the distribution of the vulnerability data through a
Bag-Of-Tokens set. We tokenised all source code in a set using
a lexicographical parser and then normalised the values based
on the total frequency to obtain a probability distribution of
the occurrences of each token.

Training Validation Test 1 Test 2 Test 3 Test 4 Test 5

Timestep: 0 1 2 3 4 5 6 7 8 9

Fig. 5. Currentness impact experiment setup.

As the Jensen-Shannon divergence metric measures dissim-
ilarity, we compute currentness as one minus this value. We
obtained currentness values of 0.761 (Big-Vul), 0.811 (Devign)
and 0.844 (D2A). These values are relatively high for this
attribute and are unlikely to indicate concept drift.

Impact. We used a similar experimental setup to McIntosh
et al. [69] to determine whether vulnerability data is a moving
target. We sorted all entries by date and then split each dataset
into ten equal partitions. The four earliest partitions were
used to train an SVP model, the fifth partition was used for
tuning, and the remaining five were used as individual test
sets. Figure 5 displays the experiment setup. However, using
a Kendall rank correlation test [71] (p > 0.05), we observed no
significant decrease in model performance for MCC, precision
or recall as the time between the training and test set increased.

Currentness issues were not observed for software vulner-
ability datasets. They exhibit good temporal distributions of
data as they are collected over a long time range.

V. DISCUSSION

Software vulnerability datasets are particularly sensitive to
data quality challenges due to the difficulties of data prepa-
ration [10]. Most existing SVP studies focus on advances in
modelling but often overshadow data quality. Consequently,
our systematic analysis of inherent data quality attributes has
revealed critical data issues afflicting the current state of soft-
ware vulnerability datasets. Data preprocessing for software
vulnerability data is currently cursory or inconsistent [10].
There is a lack of methods to guide data cleaning efforts for
SVP research. We present the following lessons learned from
our quality assessment of existing datasets:

• Be wary of reusing existing datasets without first check-
ing the data quality.

• Uniqueness is poor for software vulnerability data, so
avoid using evaluation setups that lead to significant
duplication across the training and test set.

• Inconsistently labelled data points should be removed,
based on the causes of such inconsistency.

• Source code entries with missing or incomplete informa-
tion should be removed or amended.

Issues in uniqueness, consistency, and completeness can be
detected with rule-based syntactic filters, as we have done
in this study. Hence, we can theoretically solve these issues
through exclusion of noisy samples that do not satisfy the
quality attributes. However, it may not be that easy in practice
as software vulnerability data is very scarce. SVP requires
large datasets [16], so removing noisy samples may make
datasets insufficiently small. Figure 6 displays the ratio of



Fig. 6. Ratio of clean to unclean samples in a dataset that can be automatically
detected.

clean samples that we can automatically detect for each
dataset. Furthermore, we manually observed the data accuracy
issues to be severe, but there is no existing method to automat-
ically detect such problems. Data inaccuracy could potentially
decrease the number of clean entries by a further 20-71%.

Hence, we need to solve the underlying causes of these
problems. From the findings we have obtained, we summarise
the causes of the current major data quality issues below. We
provide some directions for researchers to investigate, to help
with overcoming these challenges:

• Automatic data collection often leads to data inaccu-
racy. We found the major cause of incorrectly labelled
vulnerabilities to stem from inaccuracies in vulnerability
fix identification. Either incorrect commits or line changes
were selected. Substantial work has been conducted for
ML-based models to identify correct vulnerability patches
[12], [72]. Semantic filters or heuristics for correct vul-
nerability fixing lines is currently lacking.

• Source code duplication may make datasets lack
diversity. An underlying problem for data collection is
a lack of sample diversity and uniqueness. Whilst we are
constrained in the vulnerability samples we can collect,
we have a selection choice for the non-vulnerable class.
Thus, we suggest the need for development of data
collection heuristics that can obtain more diverse non-
vulnerable code samples. Similarly, there is a need for
better synthetic data generation methods. Bug seeding
has shown promising results in this regard [17], but this
technique still relies on the data quality of the real-world
bugs from which the technique infers the seeds.

• Unknown vulnerabilities can introduce label inconsis-
tency. Label inconsistency problems arose from underly-
ing problems for the non-vulnerable class. Big-Vul sam-
ples contained undetected vulnerabilities, and both De-
vign and D2A contained undocumented vulnerabilities.
This is particularly problematic as we lack a label source
for non-vulnerable code. Semi-supervised semantic filters
have shown promise for reducing noise in non-vulnerable
labels [13], [73]. Synthetic datasets need clearly defined
usage guidelines when used as training datasets.

VI. THREATS TO VALIDITY

Construct Validity: Our interpreted data quality analysis
may not perfectly represent the target attributes. We have
formed our analysis using standard practices from relevant
domains [48] and existing knowledge of software vulnerability
data practices [10]. Requirements elicitation using domain

experts would help improve these claims in future [18]. The
need for manual analysis of some attributes is also a potential
limitation, as it may contain bias or inaccuracies. We used two
independent raters to minimize such impacts. We used CORE
rankings as a criteria for our dataset selection, even though
CORE journal rankings have become deprecated. We consider
these ranking still sufficient, as they were only deprecated two
months prior to the date of data collection.

Internal Validity: The outcomes of our impact analysis
experiments may be affected by confounding factors. We
analysed each data attribute individually, so other data quality
issues were present during each experiment. More work is
required to examine data quality attributes cumulatively.

External Validity: We have constrained our analysis to four
state-of-the-art datasets. Measurements are also limited to
datasets that contain appropriate metadata. For instance, we
were unable to investigate the ReVeal dataset [24] due to this
issue. Similarly, we performed impact analysis using a single
SVP model. This model has been demonstrated to be state-of-
the-art [7]. Furthermore, we considered inherent data quality
attributes, so the issues remain, regardless of the model.

VII. CONCLUSION

We have systematically examined five data quality attributes
for four state-of-the-art software vulnerability datasets, to help
improve the validity and trustworthiness of downstream data-
driven tasks that rely on this information. Our findings revealed
that some software vulnerability datasets are prone to data
quality issues, particularly in terms of data accuracy, unique-
ness, and consistency. We found 20-71% of vulnerability
labels were inaccurate in real-world datasets, which altered
performance up to 65%. Furthermore, 0-47% of the labels
were inconsistent, which hindered model training completely
in the most extreme circumstances.

Data quality requires ongoing consideration and analysis.
We advise future researchers and practitioners to consider data
quality in more effective detail through the means that we
have provided. Furthermore, we advocate the importance of
data quality and the need to overcome the quality issues that
we have observed. Lastly, we urge the need for additional
investigation into system-dependent data quality attributes to
help achieve specific operational needs.

VIII. DATA AVAILABILITY

We have made our data and analysis scripts available via a
reproduction package [26].
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